PCB Calculator
May 14, 2020
Contents

1 Introduction .. 1

2 Calculators ... 1

 2.1 Regulators ... 1
 2.2 Track-Width .. 2
 2.3 Electrical-Spacing 3
 2.4 TransLine ... 3
 2.5 RF-Attenuators .. 5
 2.6 Color-Code ... 6
 2.7 Board-Classes ... 6
 2.7.1 Performance Classes 6
 2.7.2 PCB Types ... 7
Introduction

The KiCad PCB Calculator is a set of utilities to help you find the values of components or other parameters of a layout. The Calculator has the following tools:

- Regulators
- Track Width
- Electrical Spacing
- Trans Line
- RF Attenuators
- Color Code
- Board Classes

2 Calculators

2.1 Regulators

This calculator helps with the task of finding the values of the resistors needed for linear and low-dropout voltage regulators.
For the *Standard Type*, the output voltage V_{out} as a function of the reference voltage V_{ref} and resistors R_1 and R_2 is given by:

$$V_{out} = V_{ref} \cdot \left(\frac{R_1 + R_2}{R_1} \right)$$

For the *3 terminal type*, there is a correction factor due to the quiescent current I_{adj} flowing from the adjust pin:

$$V_{out} = V_{ref} \cdot \left(\frac{R_1 + R_2}{R_1} \right) + I_{adj} \cdot R_2$$

This current is typically below 100 μA and can be neglected with caution.

To use this calculator, enter the parameters of the regulator *Type*, V_{ref} and, if needed, I_{adj}, select the field you want to calculate (one of the resistors or the output voltage) and enter the other two values.

2.2 Track-Width

The Track Width tool calculates the trace width for printed circuit board conductors for a given current and temperature rise. It uses formulas from IPC-2221 (formerly IPC-D-275).
2.3 Electrical-Spacing

This table helps finding the minimum clearance between conductors.

Each line of the table has a minimum recommended distance between conductors for a given voltage (DC or AC peaks) range. If you need the values for voltages higher than 500V, enter the value in the box in the left corner and press *Update Values*.

2.4 TransLine

Transmission line theory is a cornerstone in the teaching of RF and microwave engineering.
In the calculator you can choose different sorts of Line Types and their special parameters. The models implemented are frequency-dependent, so they disagree with simpler models at high enough frequencies.

This calculator is heavilly based on Transcalc.

The transmission line types and the reference of their mathematical models are listed below:

- **Microstrip line:**

- **Coplanar wave guide.**

- **Coplanar wave guide with ground plane.**

- **Rectangular waveguide:**

- **Coaxial line.**

- **Coupled microstrip line:**

- **Stripline.**

- **Twisted pair.**
2.5 RF-Attenuators

With the RF Attenuator utility you can calculate the values of the resistors needed for different types of attenuators:

- **PI**
- **Tee**
- **Bridged Tee**
- **Resistive Splitter**

To use this tool, first select the type of attenuator you need, then enter the desired attenuation (in dB) and input/output impedances (in Ohms).

\[
\begin{align*}
Z_{\text{in}} & \quad \text{desired input impedance in } \Omega \\
Z_{\text{out}} & \quad \text{desired output impedance in } \Omega \\
\text{a attenuation in dB} & \\
L & = 10^{a/10} \text{ (the loss)} \\
A & = (L + 1)/(L - 1) \\
\text{Pi attenuator} \quad R2 & = (L - 1)/2 \sqrt{(Z_{\text{in}} \cdot Z_{\text{out}})/L} \\
R1 & = 1/(A/Z_{\text{in}} - 1/R2) \\
R3 & = 1/(A/Z_{\text{out}} - 1/R2)
\end{align*}
\]
2.6 Color-Code

This calculator helps translating the color bars from the resistor to its value. To use it, first select the *tolerance* of the resistor: 10%, 5% or equal or smaller than 2%. For example:

- Yellow Violet Red Gold: \(4 \times 7 \times 100 \pm 5\% = 4700 \text{ Ohm}, 5\% \text{ tolerance} \)
- 1kOhm, 1% tolerance: Brown Black Brown Brown

<table>
<thead>
<tr>
<th>Regulator</th>
<th>1st Band</th>
<th>2nd Band</th>
<th>3rd Band</th>
<th>4th Band</th>
<th>Multiplier</th>
<th>Color Code</th>
<th>Board Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\times 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\times 10)</td>
<td>(\pm 1%)</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(\times 10^2)</td>
<td>(\pm 2%)</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>(\times 10^3)</td>
<td>(\pm 5%)</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>(\times 10^4)</td>
<td>(\pm 0.5%)</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>(\times 10^5)</td>
<td>(\pm 0.25%)</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>(\times 10^6)</td>
<td>(\pm 0.1%)</td>
<td></td>
</tr>
<tr>
<td>Violet</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>(\times 10^7)</td>
<td>(\pm 0.05%)</td>
<td></td>
</tr>
<tr>
<td>Grey</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>(\times 10^8)</td>
<td>(\pm 0.01%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>(\times 10^9)</td>
<td>(\pm 0.1%)</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\times 0.1)</td>
<td>(\pm 5%)</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>(\times 0.01)</td>
<td>(\pm 10%)</td>
<td></td>
</tr>
</tbody>
</table>

2.7 Board-Classes

2.7.1 Performance Classes

In IPC-6011 have been three performance classes established:

- **Class 1** General Electronic Products Includes consumer products, some computer and computer peripherals suitable for applications where cosmetic imperfections are not important and the major requirement is function of the completed printed board.
- **Class 2** Dedicated Service Electronic Products Includes communications equipment, sophisticated business machines, instruments where high performance and extended life is required and for which uninterrupted service is desired but not critical. Certain cosmetic imperfections are allowed.
- **Class 3** High Reliability Electronic Products Includes the equipment and products where continued performance or performance on demand is critical. Equipment downtime cannot be tolerated and must function when required such as in life support items or flight control systems. Printed boards in this class are suitable for applications where high levels of assurance are required and service is essential.
2.7.2 PCB Types

In IPC-6012B there are also 6 Types of PCB defined:

- Printed Boards without plated through holes (1)
 - 1 Single-Sided Board
- And Boards with plated through holes (2-6)
 - 2 Double-Sided Board
 - 3 Multilayer board without blind or buried vias
 - 4 Multilayer board with blind and/or buried vias
 - 5 Multilayer metal core board without blind or buried vias
 - 6 Multilayer metal core board with blind and/or buried vias