KiCad PCB EDA Suite
c3d_render_raytracing.cpp
Go to the documentation of this file.
1 /*
2  * This program source code file is part of KiCad, a free EDA CAD application.
3  *
4  * Copyright (C) 2015-2020 Mario Luzeiro <mrluzeiro@ua.pt>
5  * Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2
10  * of the License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, you may find one here:
19  * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
20  * or you may search the http://www.gnu.org website for the version 2 license,
21  * or you may write to the Free Software Foundation, Inc.,
22  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23  */
24 
30 #include <GL/glew.h>
31 #include <algorithm>
32 #include <atomic>
33 #include <chrono>
34 #include <climits>
35 #include <thread>
36 
37 #include "c3d_render_raytracing.h"
38 #include "mortoncodes.h"
39 #include "../ccolorrgb.h"
40 #include "3d_fastmath.h"
41 #include "3d_math.h"
42 #include "../common_ogl/ogl_utils.h"
43 #include <profile.h> // To use GetRunningMicroSecs or another profiling utility
44 
45 // This should be used in future for the function
46 // convertLinearToSRGB
47 //#include <glm/gtc/color_space.hpp>
48 
50  C3D_RENDER_BASE( aAdapter, aCamera ),
51  m_postshader_ssao( aCamera )
52 {
53  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::C3D_RENDER_RAYTRACING" ) );
54 
56  m_pboId = GL_NONE;
57  m_pboDataSize = 0;
61  m_oldWindowsSize.x = 0;
62  m_oldWindowsSize.y = 0;
67 
68  m_xoffset = 0;
69  m_yoffset = 0;
70 
71  m_isPreview = false;
72  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an initial invalid state
75 }
76 
77 
79 {
80  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::~C3D_RENDER_RAYTRACING" ) );
81 
82  delete m_accelerator;
84 
87 
88  delete[] m_shaderBuffer;
90 
92 }
93 
94 
96 {
97  return 1000; // ms
98 }
99 
100 
102 {
103  // Delete PBO if it was created
105  {
106  if( glIsBufferARB( m_pboId ) )
107  glDeleteBuffers( 1, &m_pboId );
108 
109  m_pboId = GL_NONE;
110  }
111 }
112 
113 
114 void C3D_RENDER_RAYTRACING::SetCurWindowSize( const wxSize &aSize )
115 {
116  if( m_windowSize != aSize )
117  {
118  m_windowSize = aSize;
119  glViewport( 0, 0, m_windowSize.x, m_windowSize.y );
120 
122  }
123 }
124 
125 
127 {
129 
132 
134 
136 
137  // Mark the blocks not processed yet
138  std::fill( m_blockPositionsWasProcessed.begin(),
140  0 );
141 }
142 
143 
144 static inline void SetPixel( GLubyte *p, const CCOLORRGB &v )
145 {
146  p[0] = v.c[0]; p[1] = v.c[1]; p[2] = v.c[2]; p[3] = 255;
147 }
148 
149 
151  bool aIsMoving, REPORTER* aStatusReporter, REPORTER* aWarningReporter )
152 {
153  bool requestRedraw = false;
154 
155  // Initialize openGL if need
156  // /////////////////////////////////////////////////////////////////////////
158  {
159  if( !initializeOpenGL() )
160  return false;
161 
162  //aIsMoving = true;
163  requestRedraw = true;
164 
165  // It will assign the first time the windows size, so it will now
166  // revert to preview mode the first time the Redraw is called
169  }
170 
171  std::unique_ptr<BUSY_INDICATOR> busy = CreateBusyIndicator();
172 
173  // Reload board if it was requested
174  // /////////////////////////////////////////////////////////////////////////
175  if( m_reloadRequested )
176  {
177  if( aStatusReporter )
178  aStatusReporter->Report( _( "Loading..." ) );
179 
180  //aIsMoving = true;
181  requestRedraw = true;
182  reload( aStatusReporter, aWarningReporter );
183  }
184 
185 
186  // Recalculate constants if windows size was changed
187  // /////////////////////////////////////////////////////////////////////////
189  {
191  aIsMoving = true;
192  requestRedraw = true;
193 
195  }
196 
197 
198  // Clear buffers
199  // /////////////////////////////////////////////////////////////////////////
200  glClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
201  glClearDepth( 1.0f );
202  glClearStencil( 0x00 );
203  glClear( GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
204 
205  // 4-byte pixel alignment
206  glPixelStorei( GL_UNPACK_ALIGNMENT, 4 );
207 
208  glDisable( GL_STENCIL_TEST );
209  glDisable( GL_LIGHTING );
210  glDisable( GL_COLOR_MATERIAL );
211  glDisable( GL_DEPTH_TEST );
212  glDisable( GL_TEXTURE_2D );
213  glDisable( GL_BLEND );
214  glDisable( GL_MULTISAMPLE );
215 
216  const bool was_camera_changed = m_camera.ParametersChanged();
217 
218  if( requestRedraw || aIsMoving || was_camera_changed )
219  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an invalid state,
220  // so it will restart again latter
221 
222 
223  // This will only render if need, otherwise it will redraw the PBO on the screen again
224  if( aIsMoving || was_camera_changed )
225  {
226  // Set head light (camera view light) with the oposite direction of the camera
227  if( m_camera_light )
229 
232 
233  // Bind PBO
234  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
235 
236  // Get the PBO pixel pointer to write the data
237  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
238  GL_WRITE_ONLY_ARB );
239 
240  if( ptrPBO )
241  {
242  render_preview( ptrPBO );
243 
244  // release pointer to mapping buffer, this initialize the coping to PBO
245  glUnmapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB );
246  }
247 
248  glWindowPos2i( m_xoffset, m_yoffset );
249  }
250  else
251  {
252  // Bind PBO
253  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
254 
256  {
257  // Get the PBO pixel pointer to write the data
258  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
259  GL_WRITE_ONLY_ARB );
260 
261  if( ptrPBO )
262  {
263  render( ptrPBO, aStatusReporter );
264 
266  requestRedraw = true;
267 
268  // release pointer to mapping buffer, this initialize the coping to PBO
269  glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
270  }
271  }
272 
274  {
275  glClear( GL_COLOR_BUFFER_BIT );
276  // Options if we want draw background instead
277  //OGL_DrawBackground( SFVEC3F(m_boardAdapter.m_BgColorTop),
278  // SFVEC3F(m_boardAdapter.m_BgColorBot) );
279  }
280 
281  glWindowPos2i( m_xoffset, m_yoffset );
282  }
283 
284  // This way it will blend the progress rendering with the last buffer. eg:
285  // if it was called after a openGL.
286  glEnable( GL_BLEND );
287  glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
288  glEnable( GL_ALPHA_TEST );
289 
290  glDrawPixels( m_realBufferSize.x,
292  GL_RGBA,
293  GL_UNSIGNED_BYTE,
294  0 );
295 
296  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
297 
298  return requestRedraw;
299 }
300 
301 
302 void C3D_RENDER_RAYTRACING::render( GLubyte* ptrPBO, REPORTER* aStatusReporter )
303 {
306  {
308 
309  if( m_camera_light )
311 
313  {
314  // Set all pixels of PBO transparent (Alpha to 0)
315  // This way it will draw the full buffer but only shows the updated (
316  // already calculated) squares
317  // /////////////////////////////////////////////////////////////////////
318  unsigned int nPixels = m_realBufferSize.x * m_realBufferSize.y;
319  GLubyte *tmp_ptrPBO = ptrPBO + 3; // PBO is RGBA
320 
321  for( unsigned int i = 0; i < nPixels; ++i )
322  {
323  *tmp_ptrPBO = 0;
324  tmp_ptrPBO += 4; // PBO is RGBA
325  }
326  }
327 
330  }
331 
332  switch( m_rt_render_state )
333  {
335  rt_render_tracing( ptrPBO, aStatusReporter );
336  break;
337 
339  rt_render_post_process_shade( ptrPBO, aStatusReporter );
340  break;
341 
343  rt_render_post_process_blur_finish( ptrPBO, aStatusReporter );
344  break;
345 
346  default:
347  wxASSERT_MSG( false, "Invalid state on m_rt_render_state");
349  break;
350  }
351 
352  if( aStatusReporter && ( m_rt_render_state == RT_RENDER_STATE_FINISH ) )
353  {
354  // Calculation time in seconds
355  const double calculation_time = (double)( GetRunningMicroSecs() -
357 
358  aStatusReporter->Report( wxString::Format( _( "Rendering time %.3f s" ),
359  calculation_time ) );
360  }
361 }
362 
363 
365  REPORTER* aStatusReporter )
366 {
367  m_isPreview = false;
368 
369  auto startTime = std::chrono::steady_clock::now();
370  bool breakLoop = false;
371 
372  std::atomic<size_t> numBlocksRendered( 0 );
373  std::atomic<size_t> currentBlock( 0 );
374  std::atomic<size_t> threadsFinished( 0 );
375 
376  size_t parallelThreadCount = std::min<size_t>(
377  std::max<size_t>( std::thread::hardware_concurrency(), 2 ),
378  m_blockPositions.size() );
379  for( size_t ii = 0; ii < parallelThreadCount; ++ii )
380  {
381  std::thread t = std::thread( [&]()
382  {
383  for( size_t iBlock = currentBlock.fetch_add( 1 );
384  iBlock < m_blockPositions.size() && !breakLoop;
385  iBlock = currentBlock.fetch_add( 1 ) )
386  {
387  if( !m_blockPositionsWasProcessed[iBlock] )
388  {
389  rt_render_trace_block( ptrPBO, iBlock );
390  numBlocksRendered++;
391  m_blockPositionsWasProcessed[iBlock] = 1;
392 
393  // Check if it spend already some time render and request to exit
394  // to display the progress
395  if( std::chrono::duration_cast<std::chrono::milliseconds>(
396  std::chrono::steady_clock::now() - startTime ).count() > 150 )
397  breakLoop = true;
398  }
399  }
400 
401  threadsFinished++;
402  } );
403 
404  t.detach();
405  }
406 
407  while( threadsFinished < parallelThreadCount )
408  std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
409 
410  m_nrBlocksRenderProgress += numBlocksRendered;
411 
412  if( aStatusReporter )
413  aStatusReporter->Report( wxString::Format( _( "Rendering: %.0f %%" ),
414  (float)(m_nrBlocksRenderProgress * 100) /
415  (float)m_blockPositions.size() ) );
416 
417  // Check if it finish the rendering and if should continue to a post processing
418  // or mark it as finished
420  {
423  else
425  }
426 }
427 
428 #ifdef USE_SRGB_SPACE
429 
430 // This should be removed in future when the KiCad support a greater version of
431 // glm lib.
432 
433 #define SRGB_GAMA 2.4f
434 
435 // This function implements the conversion from linear RGB to sRGB
436 // https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L12
437 static SFVEC3F convertLinearToSRGB( const SFVEC3F &aRGBcolor )
438 {
439  const float gammaCorrection = 1.0f / SRGB_GAMA;
440  const SFVEC3F clampedColor = glm::clamp( aRGBcolor, SFVEC3F(0.0f), SFVEC3F(1.0f) );
441 
442  return glm::mix(
443  glm::pow( clampedColor, SFVEC3F(gammaCorrection) ) * 1.055f - 0.055f,
444  clampedColor * 12.92f,
445  glm::lessThan( clampedColor, SFVEC3F(0.0031308f) ) );
446 }
447 
448 // This function implements the conversion from sRGB to linear RGB
449 // https://github.com/g-truc/glm/blob/master/glm/gtc/color_space.inl#L35
450 SFVEC3F ConvertSRGBToLinear( const SFVEC3F &aSRGBcolor )
451 {
452  const float gammaCorrection = SRGB_GAMA;
453 
454  return glm::mix(
455  glm::pow( (aSRGBcolor + SFVEC3F(0.055f)) * SFVEC3F(0.94786729857819905213270142180095f),
456  SFVEC3F(gammaCorrection) ),
457  aSRGBcolor * SFVEC3F(0.07739938080495356037151702786378f),
458  glm::lessThanEqual( aSRGBcolor, SFVEC3F(0.04045f) ) );
459 }
460 
461 #endif
462 
463 void C3D_RENDER_RAYTRACING::rt_final_color( GLubyte *ptrPBO, const SFVEC3F &rgbColor,
464  bool applyColorSpaceConversion )
465 {
466 
467  SFVEC3F color = rgbColor;
468 
469 #ifdef USE_SRGB_SPACE
470 
471  // This should be used in future when the KiCad support a greater version of
472  // glm lib.
473  // if( applyColorSpaceConversion )
474  // rgbColor = glm::convertLinearToSRGB( rgbColor );
475 
476  if( applyColorSpaceConversion )
477  color = convertLinearToSRGB( rgbColor );
478 #endif
479 
480  ptrPBO[0] = (unsigned int)glm::clamp( (int)(color.r * 255), 0, 255 );
481  ptrPBO[1] = (unsigned int)glm::clamp( (int)(color.g * 255), 0, 255 );
482  ptrPBO[2] = (unsigned int)glm::clamp( (int)(color.b * 255), 0, 255 );
483  ptrPBO[3] = 255;
484 }
485 
486 
487 static void HITINFO_PACKET_init( HITINFO_PACKET *aHitPacket )
488 {
489  // Initialize hitPacket with a "not hit" information
490  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
491  {
492  aHitPacket[i].m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
493  aHitPacket[i].m_HitInfo.m_acc_node_info = 0;
494  aHitPacket[i].m_hitresult = false;
495  aHitPacket[i].m_HitInfo.m_HitNormal = SFVEC3F( 0.0f );
496  aHitPacket[i].m_HitInfo.m_ShadowFactor = 1.0f;
497  }
498 }
499 
500 
502  const RAY *aRayPkt,
503  HITINFO_PACKET *aHitPacket,
504  bool is_testShadow,
505  SFVEC3F *aOutHitColor )
506 {
507  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
508  {
509  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
510  {
511  if( aHitPacket[i].m_hitresult == true )
512  {
513  aOutHitColor[i] = shadeHit( bgColorY[y],
514  aRayPkt[i],
515  aHitPacket[i].m_HitInfo,
516  false,
517  0,
518  is_testShadow );
519  }
520  else
521  {
522  aOutHitColor[i] = bgColorY[y];
523  }
524  }
525  }
526 }
527 
528 
530  const HITINFO_PACKET *aHitPck_X0Y0,
531  const HITINFO_PACKET *aHitPck_AA_X1Y1,
532  const RAY *aRayPck,
533  SFVEC3F *aOutHitColor )
534 {
535  const bool is_testShadow = m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_SHADOWS );
536 
537  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
538  {
539  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
540  {
541  const RAY &rayAA = aRayPck[i];
542 
543  HITINFO hitAA;
544  hitAA.m_tHit = std::numeric_limits<float>::infinity();
545  hitAA.m_acc_node_info = 0;
546 
547  bool hitted = false;
548 
549  const unsigned int idx0y1 = ( x + 0 ) + RAYPACKET_DIM * ( y + 1 );
550  const unsigned int idx1y1 = ( x + 1 ) + RAYPACKET_DIM * ( y + 1 );
551 
552  // Gets the node info from the hit.
553  const unsigned int nodex0y0 = aHitPck_X0Y0[ i ].m_HitInfo.m_acc_node_info;
554  const unsigned int node_AA_x0y0 = aHitPck_AA_X1Y1[ i ].m_HitInfo.m_acc_node_info;
555 
556  unsigned int nodex1y0 = 0;
557 
558  if( x < (RAYPACKET_DIM - 1) )
559  nodex1y0 = aHitPck_X0Y0[ i + 1 ].m_HitInfo.m_acc_node_info;
560 
561  unsigned int nodex0y1 = 0;
562 
563  if( y < (RAYPACKET_DIM - 1) )
564  nodex0y1 = aHitPck_X0Y0[ idx0y1 ].m_HitInfo.m_acc_node_info;
565 
566  unsigned int nodex1y1 = 0;
567 
568  if( ((x < (RAYPACKET_DIM - 1)) &&
569  (y < (RAYPACKET_DIM - 1))) )
570  nodex1y1 = aHitPck_X0Y0[ idx1y1 ].m_HitInfo.m_acc_node_info;
571 
572 
573  if( ((nodex0y0 == nodex1y0) || (nodex1y0 == 0)) && // If all notes are equal we assume there was no change on the object hits
574  ((nodex0y0 == nodex0y1) || (nodex0y1 == 0)) &&
575  ((nodex0y0 == nodex1y1) || (nodex1y1 == 0)) &&
576  (nodex0y0 == node_AA_x0y0) )
577  {
578  // Option 1
579  // This option will give a very good quality on reflections (slow)
580  /*
581  if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
582  {
583  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
584  }
585  else
586  {
587  if( m_accelerator->Intersect( rayAA, hitAA ) )
588  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
589  else
590  aOutHitColor[i] += hitColor[i];
591  }
592  */
593 
594  // Option 2
595  // Trace again with the same node,
596  // then if miss just give the same color as before
597  //if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
598  // aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
599 
600  // Option 3
601  // Use same color
602 
603  }
604  else
605  {
606  // Try to intersect the different nodes
607  // It tests the possible combination of hitted or not hitted points
608  // This will try to get the best hit for this ray
609 
610  if( nodex0y0 != 0 )
611  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y0 );
612 
613  if( ( nodex1y0 != 0 ) &&
614  ( nodex0y0 != nodex1y0 ) )
615  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y0 );
616 
617  if( ( nodex0y1 != 0 ) &&
618  ( nodex0y0 != nodex0y1 ) &&
619  ( nodex1y0 != nodex0y1 ) )
620  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y1 );
621 
622  if( (nodex1y1 != 0 ) &&
623  ( nodex0y0 != nodex1y1 ) &&
624  ( nodex0y1 != nodex1y1 ) &&
625  ( nodex1y0 != nodex1y1 ) )
626  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y1 );
627 
628  if( (node_AA_x0y0 != 0 ) &&
629  ( nodex0y0 != node_AA_x0y0 ) &&
630  ( nodex0y1 != node_AA_x0y0 ) &&
631  ( nodex1y0 != node_AA_x0y0 ) &&
632  ( nodex1y1 != node_AA_x0y0 ) )
633  hitted |= m_accelerator->Intersect( rayAA, hitAA, node_AA_x0y0 );
634 
635  if( hitted )
636  {
637  // If we got any result, shade it
638  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
639  }
640  else
641  {
642  // Note: There are very few cases that will end on this situation
643  // so it is not so expensive to trace a single ray from the beginning
644 
645  // It was missed the 'last nodes' so, trace a ray from the beginning
646  if( m_accelerator->Intersect( rayAA, hitAA ) )
647  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
648  }
649  }
650  }
651  }
652 }
653 
654 #define DISP_FACTOR 0.075f
655 
657  signed int iBlock )
658 {
659  // Initialize ray packets
660  // /////////////////////////////////////////////////////////////////////////
661  const SFVEC2UI &blockPos = m_blockPositions[iBlock];
662  const SFVEC2I blockPosI = SFVEC2I( blockPos.x + m_xoffset,
663  blockPos.y + m_yoffset );
664 
665  RAYPACKET blockPacket( m_camera, (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, DISP_FACTOR),
666  SFVEC2F(DISP_FACTOR, DISP_FACTOR) /* Displacement random factor */ );
667 
668 
670 
671  HITINFO_PACKET_init( hitPacket_X0Y0 );
672 
673  // Calculate background gradient color
674  // /////////////////////////////////////////////////////////////////////////
675  SFVEC3F bgColor[RAYPACKET_DIM];// Store a vertical gradient color
676 
677  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
678  {
679  const float posYfactor = (float)(blockPosI.y + y) / (float)m_windowSize.y;
680 
681  bgColor[y] = m_BgColorTop_LinearRGB * SFVEC3F(posYfactor) +
682  m_BgColorBot_LinearRGB * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) );
683  }
684 
685  // Intersect ray packets (calculate the intersection with rays and objects)
686  // /////////////////////////////////////////////////////////////////////////
687  if( !m_accelerator->Intersect( blockPacket, hitPacket_X0Y0 ) )
688  {
689 
690  // If block is empty then set shades and continue
692  {
693  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
694  {
695  const SFVEC3F &outColor = bgColor[y];
696 
697  const unsigned int yBlockPos = blockPos.y + y;
698 
699  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
700  {
701  m_postshader_ssao.SetPixelData( blockPos.x + x,
702  yBlockPos,
703  SFVEC3F( 0.0f ),
704  outColor,
705  SFVEC3F( 0.0f ),
706  0,
707  1.0f );
708  }
709  }
710  }
711 
712  // This will set the output color to be displayed
713  // If post processing is enabled, it will not reflect the final result
714  // (as the final color will be computed on post processing)
715  // but it is used for report progress
716 
717  const bool isFinalColor = !m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING );
718 
719  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
720  {
721  const SFVEC3F &outColor = bgColor[y];
722 
723  const unsigned int yConst = blockPos.x + ( (y + blockPos.y) * m_realBufferSize.x);
724 
725  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
726  {
727  GLubyte *ptr = &ptrPBO[ (yConst + x) * 4 ];
728 
729  rt_final_color( ptr, outColor, isFinalColor );
730  }
731  }
732 
733  // There is nothing more here to do.. there are no hits ..
734  // just background so continue
735  return;
736  }
737 
738 
739  SFVEC3F hitColor_X0Y0[RAYPACKET_RAYS_PER_PACKET];
740 
741  // Shade original (0, 0) hits ("paint" the intersected objects)
742  // /////////////////////////////////////////////////////////////////////////
743  rt_shades_packet( bgColor,
744  blockPacket.m_ray,
745  hitPacket_X0Y0,
747  hitColor_X0Y0 );
748 
750  {
751  SFVEC3F hitColor_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
752 
753 
754  // Intersect one blockPosI + (0.5, 0.5) used for anti aliasing calculation
755  // /////////////////////////////////////////////////////////////////////////
756  HITINFO_PACKET hitPacket_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
757  HITINFO_PACKET_init( hitPacket_AA_X1Y1 );
758 
759  RAYPACKET blockPacket_AA_X1Y1( m_camera, (SFVEC2F)blockPosI + SFVEC2F(0.5f, 0.5f),
761 
762  if( !m_accelerator->Intersect( blockPacket_AA_X1Y1, hitPacket_AA_X1Y1 ) )
763  {
764  // Missed all the package
765  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
766  {
767  const SFVEC3F &outColor = bgColor[y];
768 
769  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
770  {
771  hitColor_AA_X1Y1[i] = outColor;
772  }
773  }
774  }
775  else
776  {
777  rt_shades_packet( bgColor,
778  blockPacket_AA_X1Y1.m_ray,
779  hitPacket_AA_X1Y1,
781  hitColor_AA_X1Y1
782  );
783  }
784 
785  SFVEC3F hitColor_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
786  SFVEC3F hitColor_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
787  SFVEC3F hitColor_AA_X0Y1_half[RAYPACKET_RAYS_PER_PACKET];
788 
789  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
790  {
791  const SFVEC3F color_average = ( hitColor_X0Y0[i] +
792  hitColor_AA_X1Y1[i] ) * SFVEC3F(0.5f);
793 
794  hitColor_AA_X1Y0[i] = color_average;
795  hitColor_AA_X0Y1[i] = color_average;
796  hitColor_AA_X0Y1_half[i] = color_average;
797  }
798 
799  RAY blockRayPck_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
800  RAY blockRayPck_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
801  RAY blockRayPck_AA_X1Y1_half[RAYPACKET_RAYS_PER_PACKET];
802 
804  (SFVEC2F)blockPosI + SFVEC2F(0.5f - DISP_FACTOR, DISP_FACTOR),
805  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
806  blockRayPck_AA_X1Y0 );
807 
809  (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, 0.5f - DISP_FACTOR),
810  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
811  blockRayPck_AA_X0Y1 );
812 
814  (SFVEC2F)blockPosI + SFVEC2F(0.25f - DISP_FACTOR, 0.25f - DISP_FACTOR),
815  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
816  blockRayPck_AA_X1Y1_half );
817 
818  rt_trace_AA_packet( bgColor,
819  hitPacket_X0Y0, hitPacket_AA_X1Y1,
820  blockRayPck_AA_X1Y0,
821  hitColor_AA_X1Y0 );
822 
823  rt_trace_AA_packet( bgColor,
824  hitPacket_X0Y0, hitPacket_AA_X1Y1,
825  blockRayPck_AA_X0Y1,
826  hitColor_AA_X0Y1 );
827 
828  rt_trace_AA_packet( bgColor,
829  hitPacket_X0Y0, hitPacket_AA_X1Y1,
830  blockRayPck_AA_X1Y1_half,
831  hitColor_AA_X0Y1_half );
832 
833  // Average the result
834  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
835  {
836  hitColor_X0Y0[i] = ( hitColor_X0Y0[i] +
837  hitColor_AA_X1Y1[i] +
838  hitColor_AA_X1Y0[i] +
839  hitColor_AA_X0Y1[i] +
840  hitColor_AA_X0Y1_half[i]
841  ) * SFVEC3F(1.0f / 5.0f);
842  }
843  }
844 
845 
846  // Copy results to the next stage
847  // /////////////////////////////////////////////////////////////////////
848 
849  GLubyte *ptr = &ptrPBO[ ( blockPos.x +
850  (blockPos.y * m_realBufferSize.x) ) * 4 ];
851 
852  const uint32_t ptrInc = (m_realBufferSize.x - RAYPACKET_DIM) * 4;
853 
855  {
856  SFVEC2I bPos;
857  bPos.y = blockPos.y;
858 
859  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
860  {
861  bPos.x = blockPos.x;
862 
863  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
864  {
865  const SFVEC3F &hColor = hitColor_X0Y0[i];
866 
867  if( hitPacket_X0Y0[i].m_hitresult == true )
868  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
869  hitPacket_X0Y0[i].m_HitInfo.m_HitNormal,
870  hColor,
871  blockPacket.m_ray[i].at(
872  hitPacket_X0Y0[i].m_HitInfo.m_tHit ),
873  hitPacket_X0Y0[i].m_HitInfo.m_tHit,
874  hitPacket_X0Y0[i].m_HitInfo.m_ShadowFactor );
875  else
876  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
877  SFVEC3F( 0.0f ),
878  hColor,
879  SFVEC3F( 0.0f ),
880  0,
881  1.0f );
882 
883  rt_final_color( ptr, hColor, false );
884 
885  bPos.x++;
886  ptr += 4;
887  }
888 
889  ptr += ptrInc;
890  bPos.y++;
891  }
892  }
893  else
894  {
895  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
896  {
897  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
898  {
899  rt_final_color( ptr, hitColor_X0Y0[i], true );
900  ptr += 4;
901  }
902 
903  ptr += ptrInc;
904  }
905  }
906 }
907 
908 
910  REPORTER* aStatusReporter )
911 {
912  (void)ptrPBO; // unused
913 
915  {
916  if( aStatusReporter )
917  aStatusReporter->Report( _( "Rendering: Post processing shader" ) );
918 
919  std::atomic<size_t> nextBlock( 0 );
920  std::atomic<size_t> threadsFinished( 0 );
921 
922  size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 );
923  for( size_t ii = 0; ii < parallelThreadCount; ++ii )
924  {
925  std::thread t = std::thread( [&]()
926  {
927  for( size_t y = nextBlock.fetch_add( 1 );
928  y < m_realBufferSize.y;
929  y = nextBlock.fetch_add( 1 ) )
930  {
931  SFVEC3F *ptr = &m_shaderBuffer[ y * m_realBufferSize.x ];
932 
933  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
934  {
935  *ptr = m_postshader_ssao.Shade( SFVEC2I( x, y ) );
936  ptr++;
937  }
938  }
939 
940  threadsFinished++;
941  } );
942 
943  t.detach();
944  }
945 
946  while( threadsFinished < parallelThreadCount )
947  std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
948 
949  // Set next state
951  }
952  else
953  {
954  // As this was an invalid state, set to finish
956  }
957 }
958 
959 
961  REPORTER *aStatusReporter )
962 {
963  (void) aStatusReporter; //unused
964 
966  {
967  // Now blurs the shader result and compute the final color
968  std::atomic<size_t> nextBlock( 0 );
969  std::atomic<size_t> threadsFinished( 0 );
970 
971  size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 );
972  for( size_t ii = 0; ii < parallelThreadCount; ++ii )
973  {
974  std::thread t = std::thread( [&]()
975  {
976  for( size_t y = nextBlock.fetch_add( 1 );
977  y < m_realBufferSize.y;
978  y = nextBlock.fetch_add( 1 ) )
979  {
980  GLubyte *ptr = &ptrPBO[ y * m_realBufferSize.x * 4 ];
981 
982  const SFVEC3F *ptrShaderY0 =
983  &m_shaderBuffer[ glm::max((int)y - 2, 0) * m_realBufferSize.x ];
984  const SFVEC3F *ptrShaderY1 =
985  &m_shaderBuffer[ glm::max((int)y - 1, 0) * m_realBufferSize.x ];
986  const SFVEC3F *ptrShaderY2 =
988  const SFVEC3F *ptrShaderY3 =
989  &m_shaderBuffer[ glm::min((int)y + 1, (int)(m_realBufferSize.y - 1)) *
990  m_realBufferSize.x ];
991  const SFVEC3F *ptrShaderY4 =
992  &m_shaderBuffer[ glm::min((int)y + 2, (int)(m_realBufferSize.y - 1)) *
993  m_realBufferSize.x ];
994 
995  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
996  {
997  // This #if should be 1, it is here that can be used for debug proposes during development
998  #if 1
999  int idx = x > 1 ? -2 : 0;
1000  SFVEC3F bluredShadeColor = ptrShaderY0[idx] * 1.0f / 273.0f +
1001  ptrShaderY1[idx] * 4.0f / 273.0f +
1002  ptrShaderY2[idx] * 7.0f / 273.0f +
1003  ptrShaderY3[idx] * 4.0f / 273.0f +
1004  ptrShaderY4[idx] * 1.0f / 273.0f;
1005 
1006  idx = x > 0 ? -1 : 0;
1007  bluredShadeColor += ptrShaderY0[idx] * 4.0f / 273.0f +
1008  ptrShaderY1[idx] * 16.0f / 273.0f +
1009  ptrShaderY2[idx] * 26.0f / 273.0f +
1010  ptrShaderY3[idx] * 16.0f / 273.0f +
1011  ptrShaderY4[idx] * 4.0f / 273.0f;
1012 
1013  bluredShadeColor += (*ptrShaderY0) * 7.0f / 273.0f +
1014  (*ptrShaderY1) * 26.0f / 273.0f +
1015  (*ptrShaderY2) * 41.0f / 273.0f +
1016  (*ptrShaderY3) * 26.0f / 273.0f +
1017  (*ptrShaderY4) * 7.0f / 273.0f;
1018 
1019  idx = (x < (int)m_realBufferSize.x - 1) ? 1 : 0;
1020  bluredShadeColor += ptrShaderY0[idx] * 4.0f / 273.0f +
1021  ptrShaderY1[idx] *16.0f / 273.0f +
1022  ptrShaderY2[idx] *26.0f / 273.0f +
1023  ptrShaderY3[idx] *16.0f / 273.0f +
1024  ptrShaderY4[idx] * 4.0f / 273.0f;
1025 
1026  idx = (x < (int)m_realBufferSize.x - 2) ? 2 : 0;
1027  bluredShadeColor += ptrShaderY0[idx] * 1.0f / 273.0f +
1028  ptrShaderY1[idx] * 4.0f / 273.0f +
1029  ptrShaderY2[idx] * 7.0f / 273.0f +
1030  ptrShaderY3[idx] * 4.0f / 273.0f +
1031  ptrShaderY4[idx] * 1.0f / 273.0f;
1032 
1033  // process next pixel
1034  ++ptrShaderY0;
1035  ++ptrShaderY1;
1036  ++ptrShaderY2;
1037  ++ptrShaderY3;
1038  ++ptrShaderY4;
1039 
1040  #ifdef USE_SRGB_SPACE
1042  #else
1043  const SFVEC3F originColor = m_postshader_ssao.GetColorAtNotProtected( SFVEC2I( x,y ) );
1044  #endif
1045 
1046  const SFVEC3F shadedColor = m_postshader_ssao.ApplyShadeColor( SFVEC2I( x,y ), originColor, bluredShadeColor );
1047  #else
1048  // Debug code
1049  //const SFVEC3F shadedColor = SFVEC3F( 1.0f ) -
1050  // m_shaderBuffer[ y * m_realBufferSize.x + x];
1051  const SFVEC3F shadedColor = m_shaderBuffer[ y * m_realBufferSize.x + x ];
1052  #endif
1053 
1054  rt_final_color( ptr, shadedColor, false );
1055 
1056  ptr += 4;
1057  }
1058  }
1059 
1060  threadsFinished++;
1061  } );
1062 
1063  t.detach();
1064  }
1065 
1066  while( threadsFinished < parallelThreadCount )
1067  std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
1068 
1069 
1070  // Debug code
1071  //m_postshader_ssao.DebugBuffersOutputAsImages();
1072  }
1073 
1074  // End rendering
1076 }
1077 
1078 
1080 {
1081  m_isPreview = true;
1082 
1083  std::atomic<size_t> nextBlock( 0 );
1084  std::atomic<size_t> threadsFinished( 0 );
1085 
1086  size_t parallelThreadCount = std::min<size_t>(
1087  std::max<size_t>( std::thread::hardware_concurrency(), 2 ),
1088  m_blockPositions.size() );
1089  for( size_t ii = 0; ii < parallelThreadCount; ++ii )
1090  {
1091  std::thread t = std::thread( [&]()
1092  {
1093  for( size_t iBlock = nextBlock.fetch_add( 1 );
1094  iBlock < m_blockPositionsFast.size();
1095  iBlock = nextBlock.fetch_add( 1 ) )
1096  {
1097  const SFVEC2UI &windowPosUI = m_blockPositionsFast[ iBlock ];
1098  const SFVEC2I windowsPos = SFVEC2I( windowPosUI.x + m_xoffset,
1099  windowPosUI.y + m_yoffset );
1100 
1101  RAYPACKET blockPacket( m_camera, windowsPos, 4 );
1102 
1104 
1105  // Initialize hitPacket with a "not hit" information
1106  for( HITINFO_PACKET& packet : hitPacket )
1107  {
1108  packet.m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
1109  packet.m_HitInfo.m_acc_node_info = 0;
1110  packet.m_hitresult = false;
1111  }
1112 
1113  // Intersect packet block
1114  m_accelerator->Intersect( blockPacket, hitPacket );
1115 
1116 
1117  // Calculate background gradient color
1118  // /////////////////////////////////////////////////////////////////////
1119  SFVEC3F bgColor[RAYPACKET_DIM];
1120 
1121  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
1122  {
1123  const float posYfactor = (float)(windowsPos.y + y * 4.0f) / (float)m_windowSize.y;
1124 
1125  bgColor[y] = (SFVEC3F)m_boardAdapter.m_BgColorTop * SFVEC3F( posYfactor) +
1126  (SFVEC3F)m_boardAdapter.m_BgColorBot * ( SFVEC3F( 1.0f) - SFVEC3F( posYfactor) );
1127  }
1128 
1129  CCOLORRGB hitColorShading[RAYPACKET_RAYS_PER_PACKET];
1130 
1131  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
1132  {
1133  const SFVEC3F bhColorY = bgColor[i / RAYPACKET_DIM];
1134 
1135  if( hitPacket[i].m_hitresult == true )
1136  {
1137  const SFVEC3F hitColor = shadeHit( bhColorY,
1138  blockPacket.m_ray[i],
1139  hitPacket[i].m_HitInfo,
1140  false,
1141  0,
1142  false );
1143 
1144  hitColorShading[i] = CCOLORRGB( hitColor );
1145  }
1146  else
1147  hitColorShading[i] = bhColorY;
1148  }
1149 
1150  CCOLORRGB cLRB_old[(RAYPACKET_DIM - 1)];
1151 
1152  for( unsigned int y = 0; y < (RAYPACKET_DIM - 1); ++y )
1153  {
1154 
1155  const SFVEC3F bgColorY = bgColor[y];
1156  const CCOLORRGB bgColorYRGB = CCOLORRGB( bgColorY );
1157 
1158  // This stores cRTB from the last block to be reused next time in a cLTB pixel
1159  CCOLORRGB cRTB_old;
1160 
1161  //RAY cRTB_ray;
1162  //HITINFO cRTB_hitInfo;
1163 
1164  for( unsigned int x = 0; x < (RAYPACKET_DIM - 1); ++x )
1165  {
1166  // pxl 0 pxl 1 pxl 2 pxl 3 pxl 4
1167  // x0 x1 ...
1168  // .---------------------------.
1169  // y0 | cLT | cxxx | cLRT | cxxx | cRT |
1170  // | cxxx | cLTC | cxxx | cRTC | cxxx |
1171  // | cLTB | cxxx | cC | cxxx | cRTB |
1172  // | cxxx | cLBC | cxxx | cRBC | cxxx |
1173  // '---------------------------'
1174  // y1 | cLB | cxxx | cLRB | cxxx | cRB |
1175 
1176  const unsigned int iLT = ((x + 0) + RAYPACKET_DIM * (y + 0));
1177  const unsigned int iRT = ((x + 1) + RAYPACKET_DIM * (y + 0));
1178  const unsigned int iLB = ((x + 0) + RAYPACKET_DIM * (y + 1));
1179  const unsigned int iRB = ((x + 1) + RAYPACKET_DIM * (y + 1));
1180 
1181  // !TODO: skip when there are no hits
1182 
1183 
1184  const CCOLORRGB &cLT = hitColorShading[ iLT ];
1185  const CCOLORRGB &cRT = hitColorShading[ iRT ];
1186  const CCOLORRGB &cLB = hitColorShading[ iLB ];
1187  const CCOLORRGB &cRB = hitColorShading[ iRB ];
1188 
1189  // Trace and shade cC
1190  // /////////////////////////////////////////////////////////////
1191  CCOLORRGB cC = bgColorYRGB;
1192 
1193  const SFVEC3F &oriLT = blockPacket.m_ray[ iLT ].m_Origin;
1194  const SFVEC3F &oriRB = blockPacket.m_ray[ iRB ].m_Origin;
1195 
1196  const SFVEC3F &dirLT = blockPacket.m_ray[ iLT ].m_Dir;
1197  const SFVEC3F &dirRB = blockPacket.m_ray[ iRB ].m_Dir;
1198 
1199  SFVEC3F oriC;
1200  SFVEC3F dirC;
1201 
1202  HITINFO centerHitInfo;
1203  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1204 
1205  bool hittedC = false;
1206 
1207  if( (hitPacket[ iLT ].m_hitresult == true) ||
1208  (hitPacket[ iRT ].m_hitresult == true) ||
1209  (hitPacket[ iLB ].m_hitresult == true) ||
1210  (hitPacket[ iRB ].m_hitresult == true) )
1211  {
1212 
1213  oriC = ( oriLT + oriRB ) * 0.5f;
1214  dirC = glm::normalize( ( dirLT + dirRB ) * 0.5f );
1215 
1216  // Trace the center ray
1217  RAY centerRay;
1218  centerRay.Init( oriC, dirC );
1219 
1220  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1221  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1222  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1223  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1224 
1225  if( nodeLT != 0 )
1226  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLT );
1227 
1228  if( ( nodeRT != 0 ) &&
1229  ( nodeRT != nodeLT ) )
1230  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRT );
1231 
1232  if( ( nodeLB != 0 ) &&
1233  ( nodeLB != nodeLT ) &&
1234  ( nodeLB != nodeRT ) )
1235  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLB );
1236 
1237  if( ( nodeRB != 0 ) &&
1238  ( nodeRB != nodeLB ) &&
1239  ( nodeRB != nodeLT ) &&
1240  ( nodeRB != nodeRT ) )
1241  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRB );
1242 
1243  if( hittedC )
1244  cC = CCOLORRGB( shadeHit( bgColorY, centerRay, centerHitInfo, false, 0, false ) );
1245  else
1246  {
1247  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1248  hittedC = m_accelerator->Intersect( centerRay, centerHitInfo );
1249 
1250  if( hittedC )
1251  cC = CCOLORRGB( shadeHit( bgColorY,
1252  centerRay,
1253  centerHitInfo,
1254  false,
1255  0,
1256  false ) );
1257  }
1258  }
1259 
1260  // Trace and shade cLRT
1261  // /////////////////////////////////////////////////////////////
1262  CCOLORRGB cLRT = bgColorYRGB;
1263 
1264  const SFVEC3F &oriRT = blockPacket.m_ray[ iRT ].m_Origin;
1265  const SFVEC3F &dirRT = blockPacket.m_ray[ iRT ].m_Dir;
1266 
1267  if( y == 0 )
1268  {
1269  // Trace the center ray
1270  RAY rayLRT;
1271  rayLRT.Init( ( oriLT + oriRT ) * 0.5f,
1272  glm::normalize( ( dirLT + dirRT ) * 0.5f ) );
1273 
1274  HITINFO hitInfoLRT;
1275  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1276 
1277  if( hitPacket[ iLT ].m_hitresult &&
1278  hitPacket[ iRT ].m_hitresult &&
1279  (hitPacket[ iLT ].m_HitInfo.pHitObject == hitPacket[ iRT ].m_HitInfo.pHitObject) )
1280  {
1281  hitInfoLRT.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1282  hitInfoLRT.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1283  hitPacket[ iRT ].m_HitInfo.m_tHit ) * 0.5f;
1284  hitInfoLRT.m_HitNormal =
1285  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1286  hitPacket[ iRT ].m_HitInfo.m_HitNormal ) * 0.5f );
1287 
1288  cLRT = CCOLORRGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) );
1289  cLRT = BlendColor( cLRT, BlendColor( cLT, cRT) );
1290  }
1291  else
1292  {
1293  if( hitPacket[ iLT ].m_hitresult ||
1294  hitPacket[ iRT ].m_hitresult ) // If any hits
1295  {
1296  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1297  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1298 
1299  bool hittedLRT = false;
1300 
1301  if( nodeLT != 0 )
1302  hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT, nodeLT );
1303 
1304  if( ( nodeRT != 0 ) &&
1305  ( nodeRT != nodeLT ) )
1306  hittedLRT |= m_accelerator->Intersect( rayLRT,
1307  hitInfoLRT,
1308  nodeRT );
1309 
1310  if( hittedLRT )
1311  cLRT = CCOLORRGB( shadeHit( bgColorY,
1312  rayLRT,
1313  hitInfoLRT,
1314  false,
1315  0,
1316  false ) );
1317  else
1318  {
1319  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1320 
1321  if( m_accelerator->Intersect( rayLRT,hitInfoLRT ) )
1322  cLRT = CCOLORRGB( shadeHit( bgColorY,
1323  rayLRT,
1324  hitInfoLRT,
1325  false,
1326  0,
1327  false ) );
1328  }
1329  }
1330  }
1331  }
1332  else
1333  cLRT = cLRB_old[x];
1334 
1335 
1336  // Trace and shade cLTB
1337  // /////////////////////////////////////////////////////////////
1338  CCOLORRGB cLTB = bgColorYRGB;
1339 
1340  if( x == 0 )
1341  {
1342  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1343  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1344 
1345  // Trace the center ray
1346  RAY rayLTB;
1347  rayLTB.Init( ( oriLT + oriLB ) * 0.5f,
1348  glm::normalize( ( dirLT + dirLB ) * 0.5f ) );
1349 
1350  HITINFO hitInfoLTB;
1351  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1352 
1353  if( hitPacket[ iLT ].m_hitresult &&
1354  hitPacket[ iLB ].m_hitresult &&
1355  ( hitPacket[ iLT ].m_HitInfo.pHitObject ==
1356  hitPacket[ iLB ].m_HitInfo.pHitObject ) )
1357  {
1358  hitInfoLTB.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1359  hitInfoLTB.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1360  hitPacket[ iLB ].m_HitInfo.m_tHit ) * 0.5f;
1361  hitInfoLTB.m_HitNormal =
1362  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1363  hitPacket[ iLB ].m_HitInfo.m_HitNormal ) * 0.5f );
1364  cLTB = CCOLORRGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) );
1365  cLTB = BlendColor( cLTB, BlendColor( cLT, cLB) );
1366  }
1367  else
1368  {
1369  if( hitPacket[ iLT ].m_hitresult ||
1370  hitPacket[ iLB ].m_hitresult ) // If any hits
1371  {
1372  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1373  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1374 
1375  bool hittedLTB = false;
1376 
1377  if( nodeLT != 0 )
1378  hittedLTB |= m_accelerator->Intersect( rayLTB,
1379  hitInfoLTB,
1380  nodeLT );
1381 
1382  if( ( nodeLB != 0 ) &&
1383  ( nodeLB != nodeLT ) )
1384  hittedLTB |= m_accelerator->Intersect( rayLTB,
1385  hitInfoLTB,
1386  nodeLB );
1387 
1388  if( hittedLTB )
1389  cLTB = CCOLORRGB( shadeHit( bgColorY,
1390  rayLTB,
1391  hitInfoLTB,
1392  false,
1393  0,
1394  false ) );
1395  else
1396  {
1397  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1398 
1399  if( m_accelerator->Intersect( rayLTB, hitInfoLTB ) )
1400  cLTB = CCOLORRGB( shadeHit( bgColorY,
1401  rayLTB,
1402  hitInfoLTB,
1403  false,
1404  0,
1405  false ) );
1406  }
1407  }
1408  }
1409  }
1410  else
1411  cLTB = cRTB_old;
1412 
1413 
1414  // Trace and shade cRTB
1415  // /////////////////////////////////////////////////////////////
1416  CCOLORRGB cRTB = bgColorYRGB;
1417 
1418  // Trace the center ray
1419  RAY rayRTB;
1420  rayRTB.Init( ( oriRT + oriRB ) * 0.5f,
1421  glm::normalize( ( dirRT + dirRB ) * 0.5f ) );
1422 
1423  HITINFO hitInfoRTB;
1424  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1425 
1426  if( hitPacket[ iRT ].m_hitresult &&
1427  hitPacket[ iRB ].m_hitresult &&
1428  ( hitPacket[ iRT ].m_HitInfo.pHitObject ==
1429  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1430  {
1431  hitInfoRTB.pHitObject = hitPacket[ iRT ].m_HitInfo.pHitObject;
1432 
1433  hitInfoRTB.m_tHit = ( hitPacket[ iRT ].m_HitInfo.m_tHit +
1434  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1435 
1436  hitInfoRTB.m_HitNormal =
1437  glm::normalize( ( hitPacket[ iRT ].m_HitInfo.m_HitNormal +
1438  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1439 
1440  cRTB = CCOLORRGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false ) );
1441  cRTB = BlendColor( cRTB, BlendColor( cRT, cRB) );
1442  }
1443  else
1444  {
1445  if( hitPacket[ iRT ].m_hitresult ||
1446  hitPacket[ iRB ].m_hitresult ) // If any hits
1447  {
1448  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1449  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1450 
1451  bool hittedRTB = false;
1452 
1453  if( nodeRT != 0 )
1454  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRT );
1455 
1456  if( ( nodeRB != 0 ) &&
1457  ( nodeRB != nodeRT ) )
1458  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRB );
1459 
1460  if( hittedRTB )
1461  cRTB = CCOLORRGB( shadeHit( bgColorY,
1462  rayRTB,
1463  hitInfoRTB,
1464  false,
1465  0,
1466  false) );
1467  else
1468  {
1469  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1470 
1471  if( m_accelerator->Intersect( rayRTB, hitInfoRTB ) )
1472  cRTB = CCOLORRGB( shadeHit( bgColorY,
1473  rayRTB,
1474  hitInfoRTB,
1475  false,
1476  0,
1477  false ) );
1478  }
1479  }
1480  }
1481 
1482  cRTB_old = cRTB;
1483 
1484 
1485  // Trace and shade cLRB
1486  // /////////////////////////////////////////////////////////////
1487  CCOLORRGB cLRB = bgColorYRGB;
1488 
1489  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1490  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1491 
1492  // Trace the center ray
1493  RAY rayLRB;
1494  rayLRB.Init( ( oriLB + oriRB ) * 0.5f,
1495  glm::normalize( ( dirLB + dirRB ) * 0.5f ) );
1496 
1497  HITINFO hitInfoLRB;
1498  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1499 
1500  if( hitPacket[ iLB ].m_hitresult &&
1501  hitPacket[ iRB ].m_hitresult &&
1502  ( hitPacket[ iLB ].m_HitInfo.pHitObject ==
1503  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1504  {
1505  hitInfoLRB.pHitObject = hitPacket[ iLB ].m_HitInfo.pHitObject;
1506 
1507  hitInfoLRB.m_tHit = ( hitPacket[ iLB ].m_HitInfo.m_tHit +
1508  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1509 
1510  hitInfoLRB.m_HitNormal =
1511  glm::normalize( ( hitPacket[ iLB ].m_HitInfo.m_HitNormal +
1512  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1513 
1514  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1515  cLRB = BlendColor( cLRB, BlendColor( cLB, cRB) );
1516  }
1517  else
1518  {
1519  if( hitPacket[ iLB ].m_hitresult ||
1520  hitPacket[ iRB ].m_hitresult ) // If any hits
1521  {
1522  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1523  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1524 
1525  bool hittedLRB = false;
1526 
1527  if( nodeLB != 0 )
1528  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeLB );
1529 
1530  if( ( nodeRB != 0 ) &&
1531  ( nodeRB != nodeLB ) )
1532  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeRB );
1533 
1534  if( hittedLRB )
1535  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1536  else
1537  {
1538  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1539 
1540  if( m_accelerator->Intersect( rayLRB, hitInfoLRB ) )
1541  cLRB = CCOLORRGB( shadeHit( bgColorY,
1542  rayLRB,
1543  hitInfoLRB,
1544  false,
1545  0,
1546  false ) );
1547  }
1548  }
1549  }
1550 
1551  cLRB_old[x] = cLRB;
1552 
1553 
1554  // Trace and shade cLTC
1555  // /////////////////////////////////////////////////////////////
1556  CCOLORRGB cLTC = BlendColor( cLT , cC );
1557 
1558  if( hitPacket[ iLT ].m_hitresult || hittedC )
1559  {
1560  // Trace the center ray
1561  RAY rayLTC;
1562  rayLTC.Init( ( oriLT + oriC ) * 0.5f,
1563  glm::normalize( ( dirLT + dirC ) * 0.5f ) );
1564 
1565  HITINFO hitInfoLTC;
1566  hitInfoLTC.m_tHit = std::numeric_limits<float>::infinity();
1567 
1568  bool hitted = false;
1569 
1570  if( hittedC )
1571  hitted = centerHitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC );
1572  else
1573  if( hitPacket[ iLT ].m_hitresult )
1574  hitted = hitPacket[ iLT ].m_HitInfo.pHitObject->Intersect( rayLTC,
1575  hitInfoLTC );
1576 
1577  if( hitted )
1578  cLTC = CCOLORRGB( shadeHit( bgColorY, rayLTC, hitInfoLTC, false, 0, false ) );
1579  }
1580 
1581 
1582  // Trace and shade cRTC
1583  // /////////////////////////////////////////////////////////////
1584  CCOLORRGB cRTC = BlendColor( cRT , cC );
1585 
1586  if( hitPacket[ iRT ].m_hitresult || hittedC )
1587  {
1588  // Trace the center ray
1589  RAY rayRTC;
1590  rayRTC.Init( ( oriRT + oriC ) * 0.5f,
1591  glm::normalize( ( dirRT + dirC ) * 0.5f ) );
1592 
1593  HITINFO hitInfoRTC;
1594  hitInfoRTC.m_tHit = std::numeric_limits<float>::infinity();
1595 
1596  bool hitted = false;
1597 
1598  if( hittedC )
1599  hitted = centerHitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC );
1600  else
1601  if( hitPacket[ iRT ].m_hitresult )
1602  hitted = hitPacket[ iRT ].m_HitInfo.pHitObject->Intersect( rayRTC,
1603  hitInfoRTC );
1604 
1605  if( hitted )
1606  cRTC = CCOLORRGB( shadeHit( bgColorY, rayRTC, hitInfoRTC, false, 0, false ) );
1607  }
1608 
1609 
1610  // Trace and shade cLBC
1611  // /////////////////////////////////////////////////////////////
1612  CCOLORRGB cLBC = BlendColor( cLB , cC );
1613 
1614  if( hitPacket[ iLB ].m_hitresult || hittedC )
1615  {
1616  // Trace the center ray
1617  RAY rayLBC;
1618  rayLBC.Init( ( oriLB + oriC ) * 0.5f,
1619  glm::normalize( ( dirLB + dirC ) * 0.5f ) );
1620 
1621  HITINFO hitInfoLBC;
1622  hitInfoLBC.m_tHit = std::numeric_limits<float>::infinity();
1623 
1624  bool hitted = false;
1625 
1626  if( hittedC )
1627  hitted = centerHitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC );
1628  else
1629  if( hitPacket[ iLB ].m_hitresult )
1630  hitted = hitPacket[ iLB ].m_HitInfo.pHitObject->Intersect( rayLBC,
1631  hitInfoLBC );
1632 
1633  if( hitted )
1634  cLBC = CCOLORRGB( shadeHit( bgColorY, rayLBC, hitInfoLBC, false, 0, false ) );
1635  }
1636 
1637 
1638  // Trace and shade cRBC
1639  // /////////////////////////////////////////////////////////////
1640  CCOLORRGB cRBC = BlendColor( cRB , cC );
1641 
1642  if( hitPacket[ iRB ].m_hitresult || hittedC )
1643  {
1644  // Trace the center ray
1645  RAY rayRBC;
1646  rayRBC.Init( ( oriRB + oriC ) * 0.5f,
1647  glm::normalize( ( dirRB + dirC ) * 0.5f ) );
1648 
1649  HITINFO hitInfoRBC;
1650  hitInfoRBC.m_tHit = std::numeric_limits<float>::infinity();
1651 
1652  bool hitted = false;
1653 
1654  if( hittedC )
1655  hitted = centerHitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC );
1656  else
1657  if( hitPacket[ iRB ].m_hitresult )
1658  hitted = hitPacket[ iRB ].m_HitInfo.pHitObject->Intersect( rayRBC,
1659  hitInfoRBC );
1660 
1661  if( hitted )
1662  cRBC = CCOLORRGB( shadeHit( bgColorY, rayRBC, hitInfoRBC, false, 0, false ) );
1663  }
1664 
1665 
1666  // Set pixel colors
1667  // /////////////////////////////////////////////////////////////
1668 
1669  GLubyte *ptr = &ptrPBO[ (4 * x + m_blockPositionsFast[iBlock].x +
1670  m_realBufferSize.x *
1671  (m_blockPositionsFast[iBlock].y + 4 * y)) * 4 ];
1672  SetPixel( ptr + 0, cLT );
1673  SetPixel( ptr + 4, BlendColor( cLT, cLRT, cLTC ) );
1674  SetPixel( ptr + 8, cLRT );
1675  SetPixel( ptr + 12, BlendColor( cLRT, cRT, cRTC ) );
1676 
1677  ptr += m_realBufferSize.x * 4;
1678  SetPixel( ptr + 0, BlendColor( cLT , cLTB, cLTC ) );
1679  SetPixel( ptr + 4, BlendColor( cLTC, BlendColor( cLT , cC ) ) );
1680  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRT, cLTC, cRTC ) ) );
1681  SetPixel( ptr + 12, BlendColor( cRTC, BlendColor( cRT , cC ) ) );
1682 
1683  ptr += m_realBufferSize.x * 4;
1684  SetPixel( ptr + 0, cLTB );
1685  SetPixel( ptr + 4, BlendColor( cC, BlendColor( cLTB, cLTC, cLBC ) ) );
1686  SetPixel( ptr + 8, cC );
1687  SetPixel( ptr + 12, BlendColor( cC, BlendColor( cRTB, cRTC, cRBC ) ) );
1688 
1689  ptr += m_realBufferSize.x * 4;
1690  SetPixel( ptr + 0, BlendColor( cLB , cLTB, cLBC ) );
1691  SetPixel( ptr + 4, BlendColor( cLBC, BlendColor( cLB , cC ) ) );
1692  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRB, cLBC, cRBC ) ) );
1693  SetPixel( ptr + 12, BlendColor( cRBC, BlendColor( cRB , cC ) ) );
1694  }
1695  }
1696  }
1697 
1698  threadsFinished++;
1699  } );
1700 
1701  t.detach();
1702  }
1703 
1704  while( threadsFinished < parallelThreadCount )
1705  std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
1706 }
1707 
1708 
1709 #define USE_EXPERIMENTAL_SOFT_SHADOWS 1
1710 
1712  const RAY &aRay,
1713  HITINFO &aHitInfo,
1714  bool aIsInsideObject,
1715  unsigned int aRecursiveLevel,
1716  bool is_testShadow ) const
1717 {
1718  if( aRecursiveLevel > 2 )
1719  return SFVEC3F( 0.0f );
1720 
1721  SFVEC3F hitPoint = aHitInfo.m_HitPoint;
1722 
1723  if( !m_isPreview )
1724  hitPoint += aHitInfo.m_HitNormal * m_boardAdapter.GetNonCopperLayerThickness3DU() * 1.2f;
1725 
1726  const CMATERIAL *objMaterial = aHitInfo.pHitObject->GetMaterial();
1727  wxASSERT( objMaterial != NULL );
1728 
1729  const SFVEC3F diffuseColorObj = aHitInfo.pHitObject->GetDiffuseColor( aHitInfo );
1730 
1731  SFVEC3F outColor = objMaterial->GetEmissiveColor();
1732 
1733  const LIST_LIGHT &lightList = m_lights.GetList();
1734 
1735 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1736  const bool is_aa_enabled = m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_ANTI_ALIASING ) &&
1737  (!m_isPreview);
1738 #endif
1739 
1740  float shadow_att_factor_sum = 0.0f;
1741 
1742  unsigned int nr_lights_that_can_cast_shadows = 0;
1743 
1744  for( LIST_LIGHT::const_iterator ii = lightList.begin();
1745  ii != lightList.end();
1746  ++ii )
1747  {
1748  const CLIGHT *light = (CLIGHT *)*ii;
1749 
1750  SFVEC3F vectorToLight;
1751  SFVEC3F colorOfLight;
1752  float distToLight;
1753 
1754  light->GetLightParameters( hitPoint, vectorToLight, colorOfLight, distToLight );
1755 
1756  if( m_isPreview )
1757  colorOfLight = SFVEC3F( 1.0f );
1758 
1759  /*
1760  if( (!m_isPreview) &&
1761  // Little hack to make randomness to the shading and shadows
1762  m_boardAdapter.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) )
1763  vectorToLight = glm::normalize( vectorToLight +
1764  UniformRandomHemisphereDirection() * 0.1f );
1765  */
1766 
1767  const float NdotL = glm::dot( aHitInfo.m_HitNormal, vectorToLight );
1768 
1769  // Only calc shade if the normal is facing the direction of light,
1770  // otherwise it is in the shadow
1771  if( NdotL >= FLT_EPSILON )
1772  {
1773  float shadow_att_factor_light = 1.0f;
1774 
1775  if( is_testShadow && light->GetCastShadows() )
1776  {
1777  nr_lights_that_can_cast_shadows++;
1778 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1779  if( (!is_aa_enabled) ||
1780 
1781  // For rays that are recursive, just calculate one hit shadow
1782  (aRecursiveLevel > 0) ||
1783 
1784  // Only use soft shadows if using post processing
1786  )
1787  {
1788 #endif
1789  RAY rayToLight;
1790  rayToLight.Init( hitPoint, vectorToLight );
1791 
1792  // Test if point is not in the shadow.
1793  // Test for any hit from the point in the direction of light
1794  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1795  shadow_att_factor_light = 0.0f;
1796 
1797 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1798  }
1799 
1800  // Experimental softshadow calculation
1801  else
1802  {
1803 
1804  const unsigned int shadow_number_of_samples = 3;
1805  const float shadow_inc_factor = 1.0f / (float)(shadow_number_of_samples);
1806 
1807  for( unsigned int i = 0; i < shadow_number_of_samples; ++i )
1808  {
1809  const SFVEC3F unifVector = UniformRandomHemisphereDirection();
1810  const SFVEC3F disturbed_vector_to_light = glm::normalize( vectorToLight +
1811  unifVector *
1812  0.05f );
1813 
1814  RAY rayToLight;
1815  rayToLight.Init( hitPoint, disturbed_vector_to_light );
1816 
1817  // !TODO: there are multiple ways that this tests can be
1818  // optimized. Eg: by packing rays or to test against the
1819  // latest hit object.
1820 
1821  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1822  {
1823  shadow_att_factor_light -= shadow_inc_factor;
1824  }
1825  }
1826  }
1827 #endif
1828  shadow_att_factor_sum += shadow_att_factor_light;
1829  }
1830 
1832  {
1833  outColor += objMaterial->Shade( aRay,
1834  aHitInfo,
1835  NdotL,
1836  diffuseColorObj,
1837  vectorToLight,
1838  colorOfLight,
1839  shadow_att_factor_light );
1840  }
1841  else
1842  {
1843  // This is a render hack in order to compensate for the lack of
1844  // ambient and too much darkness when using post process shader
1845  // It will calculate as it was not in shadow
1846  outColor += objMaterial->Shade( aRay,
1847  aHitInfo,
1848  NdotL,
1849  diffuseColorObj,
1850  vectorToLight,
1851  colorOfLight,
1852  // The sampled point will be darkshaded by the post
1853  // processing, so here it compensates to not shadow
1854  // so much
1855  glm::min( shadow_att_factor_light + (3.0f / 6.0f), 1.0f )
1856  );
1857  }
1858  }
1859  else
1860  {
1861  outColor += objMaterial->GetAmbientColor();
1862  }
1863 
1864  // Only use the headlight for preview
1865  if( m_isPreview )
1866  break;
1867  }
1868 
1869  // Improvement: this is not taking in account the lightcolor
1870  if( nr_lights_that_can_cast_shadows > 0 )
1871  {
1872  aHitInfo.m_ShadowFactor = glm::max( shadow_att_factor_sum /
1873  (float)(nr_lights_that_can_cast_shadows * 1.0f), 0.0f );
1874  }
1875  else
1876  {
1877  aHitInfo.m_ShadowFactor = 1.0f;
1878  }
1879 
1880  // Clamp color to not be brighter than 1.0f
1881  outColor = glm::min( outColor, SFVEC3F( 1.0f ) );
1882 
1883  if( !m_isPreview )
1884  {
1885  // Reflections
1886  // /////////////////////////////////////////////////////////////////////
1887 
1888  if( !aIsInsideObject &&
1889  (objMaterial->GetReflection() > 0.0f) &&
1891  {
1892  const unsigned int reflection_number_of_samples = objMaterial->GetNrReflectionsSamples();
1893 
1894  SFVEC3F sum_color = SFVEC3F(0.0f);
1895 
1896  const SFVEC3F reflectVector = aRay.m_Dir -
1897  2.0f * glm::dot( aRay.m_Dir, aHitInfo.m_HitNormal ) *
1898  aHitInfo.m_HitNormal;
1899 
1900  for( unsigned int i = 0; i < reflection_number_of_samples; ++i )
1901  {
1902  // Apply some randomize to the reflected vector
1903  const SFVEC3F random_reflectVector =
1904  glm::normalize( reflectVector +
1906  0.025f );
1907 
1908  RAY reflectedRay;
1909  reflectedRay.Init( hitPoint, random_reflectVector );
1910 
1911  HITINFO reflectedHit;
1912  reflectedHit.m_tHit = std::numeric_limits<float>::infinity();
1913 
1914  if( m_accelerator->Intersect( reflectedRay, reflectedHit ) )
1915  {
1916  sum_color += ( diffuseColorObj + objMaterial->GetSpecularColor() ) *
1917  shadeHit( aBgColor,
1918  reflectedRay,
1919  reflectedHit,
1920  false,
1921  aRecursiveLevel + 1,
1922  is_testShadow ) *
1923  SFVEC3F( objMaterial->GetReflection() *
1924  // Falloff factor
1925  (1.0f / ( 1.0f + 0.75f * reflectedHit.m_tHit *
1926  reflectedHit.m_tHit) ) );
1927  }
1928  }
1929 
1930  outColor += (sum_color / SFVEC3F( (float)reflection_number_of_samples) );
1931  }
1932 
1933 
1934  // Refractions
1935  // /////////////////////////////////////////////////////////////////////
1936 
1937  const float objTransparency = aHitInfo.pHitObject->GetModelTransparency();
1938 
1939  if( ( objTransparency > 0.0f ) &&
1941  {
1942  const float airIndex = 1.000293f;
1943  const float glassIndex = 1.49f;
1944  const float air_over_glass = airIndex / glassIndex;
1945  const float glass_over_air = glassIndex / airIndex;
1946 
1947  const float refractionRatio = aIsInsideObject?glass_over_air:air_over_glass;
1948 
1949  SFVEC3F refractedVector;
1950 
1951  if( Refract( aRay.m_Dir,
1952  aHitInfo.m_HitNormal,
1953  refractionRatio,
1954  refractedVector ) )
1955  {
1956  // This increase the start point by a "fixed" factor so it will work the
1957  // same for all distances
1958  const SFVEC3F startPoint = aRay.at( NextFloatUp(
1959  NextFloatUp(
1960  NextFloatUp( aHitInfo.m_tHit ) ) ) );
1961 
1962  const unsigned int refractions_number_of_samples = objMaterial->GetNrRefractionsSamples();
1963 
1964  SFVEC3F sum_color = SFVEC3F(0.0f);
1965 
1966  for( unsigned int i = 0; i < refractions_number_of_samples; ++i )
1967  {
1968  RAY refractedRay;
1969 
1970  if( refractions_number_of_samples > 1 )
1971  {
1972  // apply some randomize to the refracted vector
1973  const SFVEC3F randomizeRefractedVector = glm::normalize( refractedVector +
1975  0.15f *
1976  (1.0f - objTransparency) );
1977 
1978  refractedRay.Init( startPoint, randomizeRefractedVector );
1979  }
1980  else
1981  {
1982  refractedRay.Init( startPoint, refractedVector );
1983  }
1984 
1985  HITINFO refractedHit;
1986  refractedHit.m_tHit = std::numeric_limits<float>::infinity();
1987 
1988  SFVEC3F refractedColor = objMaterial->GetAmbientColor();
1989 
1990  if( m_accelerator->Intersect( refractedRay, refractedHit ) )
1991  {
1992  refractedColor = shadeHit( aBgColor,
1993  refractedRay,
1994  refractedHit,
1995  true,
1996  aRecursiveLevel + 1,
1997  false );
1998 
1999  const SFVEC3F absorbance = ( SFVEC3F(1.0f) - diffuseColorObj ) *
2000  (1.0f - objTransparency ) *
2001  objMaterial->GetAbsorvance() * // Adjust falloff factor
2002  -refractedHit.m_tHit;
2003 
2004  const SFVEC3F transparency = SFVEC3F( expf( absorbance.r ),
2005  expf( absorbance.g ),
2006  expf( absorbance.b ) );
2007 
2008  sum_color += refractedColor * transparency * objTransparency;
2009  }
2010  else
2011  {
2012  sum_color += refractedColor * objTransparency;
2013  }
2014  }
2015 
2016  outColor = outColor * (1.0f - objTransparency) +
2017  (sum_color / SFVEC3F( (float)refractions_number_of_samples) );
2018  }
2019  }
2020  }
2021 
2022  //outColor += glm::max( -glm::dot( aHitInfo.m_HitNormal, aRay.m_Dir ), 0.0f ) *
2023  // objMaterial->GetAmbientColor();
2024 
2025  return outColor;
2026 }
2027 
2028 
2030 {
2031  opengl_init_pbo();
2032 }
2033 
2034 
2036 {
2037  if( GLEW_ARB_pixel_buffer_object )
2038  {
2040 
2041  // Try to delete vbo if it was already initialized
2043 
2044  // Learn about Pixel buffer objects at:
2045  // http://www.songho.ca/opengl/gl_pbo.html
2046  // http://web.eecs.umich.edu/~sugih/courses/eecs487/lectures/25-PBO+Mipmapping.pdf
2047  // "create 2 pixel buffer objects, you need to delete them when program exits.
2048  // glBufferDataARB with NULL pointer reserves only memory space."
2049 
2050  // This sets the number of RGBA pixels
2052 
2053  glGenBuffersARB( 1, &m_pboId );
2054  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
2055  glBufferDataARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboDataSize, 0, GL_STREAM_DRAW_ARB );
2056  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
2057 
2058  wxLogTrace( m_logTrace,
2059  wxT( "C3D_RENDER_RAYTRACING:: GLEW_ARB_pixel_buffer_object is supported" ) );
2060  }
2061 }
2062 
2063 
2065 {
2066  m_is_opengl_initialized = true;
2067 
2068  return true;
2069 }
2070 
2071 
2072 static float distance( const SFVEC2UI& a, const SFVEC2UI& b )
2073 {
2074  const float dx = (float) a.x - (float) b.x;
2075  const float dy = (float) a.y - (float) b.y;
2076  return hypotf( dx, dy );
2077 }
2078 
2080 {
2081 
2082  m_realBufferSize = SFVEC2UI( 0 );
2083 
2084  // Calc block positions for fast preview mode
2085  // /////////////////////////////////////////////////////////////////////
2086  m_blockPositionsFast.clear();
2087 
2088  unsigned int i = 0;
2089 
2090  while(1)
2091  {
2092  const unsigned int mX = DecodeMorton2X(i);
2093  const unsigned int mY = DecodeMorton2Y(i);
2094 
2095  i++;
2096 
2097  const SFVEC2UI blockPos( mX * 4 * RAYPACKET_DIM - mX * 4,
2098  mY * 4 * RAYPACKET_DIM - mY * 4);
2099 
2100  if( ( blockPos.x >= ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) &&
2101  ( blockPos.y >= ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) )
2102  break;
2103 
2104  if( ( blockPos.x < ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4) ) ) &&
2105  ( blockPos.y < ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4) ) ) )
2106  {
2107  m_blockPositionsFast.push_back( blockPos );
2108 
2109  if( blockPos.x > m_realBufferSize.x )
2110  m_realBufferSize.x = blockPos.x;
2111 
2112  if( blockPos.y > m_realBufferSize.y )
2113  m_realBufferSize.y = blockPos.y;
2114  }
2115  }
2116 
2118 
2121 
2122  m_xoffset = (m_windowSize.x - m_realBufferSize.x) / 2;
2123  m_yoffset = (m_windowSize.y - m_realBufferSize.y) / 2;
2124 
2126 
2127 
2128  // Calc block positions for regular rendering. Choose an 'inside out'
2129  // style of rendering
2130  // /////////////////////////////////////////////////////////////////////
2131  m_blockPositions.clear();
2132  const int blocks_x = m_realBufferSize.x / RAYPACKET_DIM;
2133  const int blocks_y = m_realBufferSize.y / RAYPACKET_DIM;
2134  m_blockPositions.reserve( blocks_x * blocks_y );
2135 
2136  for( int x = 0; x < blocks_x; ++x )
2137  for( int y = 0; y < blocks_y; ++y )
2138  m_blockPositions.emplace_back( x * RAYPACKET_DIM, y * RAYPACKET_DIM );
2139 
2140  const SFVEC2UI center( m_realBufferSize.x / 2, m_realBufferSize.y / 2 );
2141  std::sort( m_blockPositions.begin(), m_blockPositions.end(),
2142  [&]( const SFVEC2UI& a, const SFVEC2UI& b ) {
2143  // Sort order: inside out.
2144  return distance( a, center ) < distance( b, center );
2145  } );
2146 
2147  // Create m_shader buffer
2148  delete[] m_shaderBuffer;
2150 
2151  opengl_init_pbo();
2152 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
const SFVEC3F & GetEmissiveColor() const
Definition: cmaterial.h:209
float m_ShadowFactor
( 4) Shadow attenuation (1.0 no shadow, 0.0f darkness)
Definition: hitinfo.h:50
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
SFVEC3F ApplyShadeColor(const SFVEC2I &aShaderPos, const SFVEC3F &aInputColor, const SFVEC3F &aShadeColor) const override
ApplyShadeColor - apply the final color process using a previous stage color.
#define SRGB_GAMA
void rt_shades_packet(const SFVEC3F *bgColorY, const RAY *aRayPkt, HITINFO_PACKET *aHitPacket, bool is_testShadow, SFVEC3F *aOutHitColor)
Defines math related functions.
void rt_render_post_process_shade(GLubyte *ptrPBO, REPORTER *aStatusReporter)
void rt_final_color(GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
RAY m_ray[RAYPACKET_RAYS_PER_PACKET]
Definition: raypacket.h:46
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
SFVEC3F Shade(const SFVEC2I &aShaderPos) const override
CPOSTSHADER_SSAO m_postshader_ssao
std::vector< int > m_blockPositionsWasProcessed
this flags if a position was already processed (cleared each new render)
uint32_t DecodeMorton2X(uint32_t code)
Definition: mortoncodes.cpp:98
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:195
wxSize m_oldWindowsSize
used to see if the windows size changed
void Init(const SFVEC3F &o, const SFVEC3F &d)
Definition: ray.cpp:40
virtual bool IntersectP(const RAY &aRay, float aMaxDistance) const =0
const SFVEC3F & GetSpecularColor() const
Definition: cmaterial.h:210
#define RAYPACKET_INVMASK
Definition: raypacket.h:39
Class CCAMERA is a virtual class used to derive CCAMERA objects from.
Definition: ccamera.h:79
int color
Definition: DXF_plotter.cpp:61
bool Redraw(bool aIsMoving, REPORTER *aStatusReporter, REPORTER *aWarningReporter) override
Redraw - Ask to redraw the view.
const SFVEC3F & GetDir() const
Definition: ccamera.h:112
Definition: ray.h:67
REPORTER is a pure virtual class used to derive REPORTER objects from.
Definition: reporter.h:64
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_SEVERITY_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
float m_tHit
( 4) distance
Definition: hitinfo.h:43
const SFVEC3F & GetAmbientColor() const
Definition: cmaterial.h:208
unsigned int GetNrRefractionsSamples() const
Definition: cmaterial.h:216
SFVEC3F at(float t) const
Definition: ray.h:89
uint32_t DecodeMorton2Y(uint32_t code)
HITINFO_PACKET * m_firstHitinfo
unsigned int m_stats_converted_dummy_to_plane
bool Refract(const SFVEC3F &aInVector, const SFVEC3F &aNormal, float aRin_over_Rout, SFVEC3F &aOutVector)
Refract Based on: https://github.com/mmp/pbrt-v3/blob/master/src/core/reflection.h See also: http://w...
Definition: 3d_math.h:113
SFVEC3D m_BgColorTop
background top color
virtual SFVEC3F Shade(const RAY &aRay, const HITINFO &aHitInfo, float NdotL, const SFVEC3F &aDiffuseObjColor, const SFVEC3F &aDirToLight, const SFVEC3F &aLightColor, float aShadowAttenuationFactor) const =0
Shade - Shades an intersection point.
SFVEC3F m_HitPoint
(12) hit position
Definition: hitinfo.h:49
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
void OGL_DrawBackground(const SFVEC3F &aTopColor, const SFVEC3F &aBotColor)
OGL_DrawBackground.
Definition: ogl_utils.cpp:184
CGENERICACCELERATOR * m_accelerator
size_t m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
#define NULL
bool m_is_opengl_initialized
flag if the opengl specific for this render was already initialized
Implementes Morton Codes https://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/ http://www....
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
const CMATERIAL * GetMaterial() const
Definition: cobject.h:72
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetCastShadows() const
Definition: clight.h:58
void InitFrame()
Definition: cpostshader.h:54
RENDER_ENGINE RenderEngineGet() const noexcept
RenderEngineGet.
HITINFO m_HitInfo
Definition: hitinfo.h:63
wxSize m_windowSize
The window size that this camera is working.
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
int GetWaitForEditingTimeOut() override
GetWaitForEditingTimeOut - Give the interface the time (in ms) that it should wait for editing or mov...
void rt_trace_AA_packet(const SFVEC3F *aBgColorY, const HITINFO_PACKET *aHitPck_X0Y0, const HITINFO_PACKET *aHitPck_AA_X1Y1, const RAY *aRayPck, SFVEC3F *aOutHitColor)
const COBJECT * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:45
float GetReflection() const
Definition: cmaterial.h:214
std::unique_ptr< BUSY_INDICATOR > CreateBusyIndicator() const
Return a created busy indicator, if a factory has been set, else a null pointer.
CDIRECTIONALLIGHT * m_camera_light
void render(GLubyte *ptrPBO, REPORTER *aStatusReporter)
SFVEC3D m_BgColorBot
background bottom color
std::vector< SFVEC2UI > m_blockPositionsFast
this encodes the Morton code positions (on fast preview mode)
unsigned char c[3]
Definition: ccolorrgb.h:37
A base light class to derive to implement other light classes.
Definition: clight.h:37
SFVEC3F m_Dir
Definition: ray.h:72
BOARD_ADAPTER & m_boardAdapter
settings refrence in use for this render
SFVEC3F UniformRandomHemisphereDirection()
Definition: 3d_math.h:54
SFVEC3F m_Origin
Definition: ray.h:69
static void HITINFO_PACKET_init(HITINFO_PACKET *aHitPacket)
void SetPixelData(unsigned int x, unsigned int y, const SFVEC3F &aNormal, const SFVEC3F &aColor, const SFVEC3F &aHitPosition, float aDepth, float aShadowAttFactor)
Definition: cpostshader.cpp:78
void rt_render_tracing(GLubyte *ptrPBO, REPORTER *aStatusReporter)
void SetDirection(const SFVEC3F &aDir)
SetDirection - Set directional light orientation.
Definition: clight.h:129
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
Functions Intersect.
static void SetPixel(GLubyte *p, const CCOLORRGB &v)
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
#define RAYPACKET_RAYS_PER_PACKET
Definition: raypacket.h:40
#define _(s)
Definition: 3d_actions.cpp:33
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
unsigned int m_acc_node_info
( 4) The acc stores here the node that it hits
Definition: hitinfo.h:47
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
#define DISP_FACTOR
CCOLORRGB BlendColor(const CCOLORRGB &aC1, const CCOLORRGB &aC2)
Definition: ccolorrgb.cpp:42
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
unsigned long int m_stats_start_rendering_time
Time that the render starts.
float NextFloatUp(float v)
Definition: 3d_fastmath.h:136
const LIST_LIGHT & GetList() const
GetList - get light list of this container.
Definition: clight.h:196
static float distance(const SFVEC2UI &a, const SFVEC2UI &b)
float GetNonCopperLayerThickness3DU() const noexcept
GetNonCopperLayerThickness3DU - Get the current non copper layers thickness.
Defines math related functions.
void SetCurWindowSize(const wxSize &aSize) override
SetCurWindowSize - Before each render, the canvas will tell the render what is the size of its window...
virtual void GetLightParameters(const SFVEC3F &aHitPoint, SFVEC3F &aOutVectorToLight, SFVEC3F &aOutLightColor, float &aOutDistance) const =0
GetLightParameters - Get parameters from this light.
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:42
CCONTAINER2D * m_outlineBoard2dObjects
float GetModelTransparency() const
Definition: cobject.h:73
std::list< CLIGHT * > LIST_LIGHT
Definition: clight.h:151
static SFVEC3F convertLinearToSRGB(const SFVEC3F &aRGBcolor)
void rt_render_post_process_blur_finish(GLubyte *ptrPBO, REPORTER *aStatusReporter)
void UpdateSize(const SFVEC2UI &aSize)
Definition: cpostshader.cpp:72
float GetAbsorvance() const
Definition: cmaterial.h:215
void reload(REPORTER *aStatusReporter, REPORTER *aWarningReporter)
C3D_RENDER_RAYTRACING(BOARD_ADAPTER &aAdapter, CCAMERA &aCamera)
bool m_hitresult
Definition: hitinfo.h:62
const SFVEC3F & GetColorAtNotProtected(const SFVEC2I &aPos) const
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.
unsigned int GetNrReflectionsSamples() const
Definition: cmaterial.h:217
Class BOARD_ADAPTER Helper class to handle information needed to display 3D board.
Definition: board_adapter.h:68
void render_preview(GLubyte *ptrPBO)
virtual SFVEC3F GetDiffuseColor(const HITINFO &aHitInfo) const =0
void RAYPACKET_InitRays_with2DDisplacement(const CCAMERA &aCamera, const SFVEC2F &aWindowsPosition, const SFVEC2F &a2DWindowsPosDisplacementFactor, RAY *aRayPck)
Definition: raypacket.cpp:174
void rt_render_trace_block(GLubyte *ptrPBO, signed int iBlock)
bool ParametersChanged()
Function ParametersChanged.
Definition: ccamera.cpp:587
This is a base class to hold data and functions for render targets.