[image: kicad_epub_en]
KiCad

The KiCad Team

Reference manual
Copyright
This document is Copyright © 2010-2018 by its contributors as listed
below. You may distribute it and/or modify it under the terms of either
the GNU General Public License (http://www.gnu.org/licenses/gpl.html),
version 3 or later, or the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.
All trademarks within this guide belong to their legitimate owners.
Contributors
Jean-Pierre Charras, Fabrizio Tappero.
Feedback
Please direct any bug reports, suggestions or new versions to here:
	
About KiCad document: https://github.com/KiCad/kicad-doc/issues

	
About KiCad software: https://bugs.launchpad.net/kicad

	
About KiCad translation: https://github.com/KiCad/kicad-i18n/issues

Publication date and software version
2015, May 21.

Chapter 1. Introduction

1.1. KiCad

KiCad is an open-source software tool for the creation of electronic
schematic diagrams and PCB artwork. Beneath its singular surface, KiCad
incorporates an elegant ensemble of the following software tools:
	
KiCad: Project manager

	
Eeschema: Schematic editor and component editor

	
Pcbnew: Circuit board layout editor and footprint editor

	
GerbView: Gerber viewer

3 utility tools are also included:
	
Bitmap2Component: Component maker for logos. It creates a schematic
 component or a footprint from a bitmap picture.

	
PcbCalculator: A calculator that is helpful to calculate
 components for regulators, track width versus current, transmission
 lines, etc.

	
Pl Editor: Page layout editor.

These tools are usually run from the project manager, but can be also run
as stand-alone tools.
KiCad does not present any board-size limitation and it can
handle up to 32 copper layers, 14 technical layers and 4 auxiliary layers.
KiCad can create all the files necessary for building printed circuit boards, including:
	
Gerber files for photo-plotters

	
drilling files

	
component location files

Being open source (GPL licensed), KiCad represents the ideal tool for
projects oriented towards the creation of electronic hardware with an
open-source flavour.
KiCad is available for Linux, Windows and Apple macOS.

1.2. KiCad files and folders

KiCad creates and uses files with the following specific file extensions (and folders)
for schematic and board editing.
Project manager file:
	*.pro
	Small file containing a few parameters for the current project, including the component library list.

Schematic editor files:
	*.sch
	Schematic files, which do not contain the components themselves.

	*.lib
	Schematic component library files, containing the component descriptions: graphic shape, pins, fields.

	*.dcm
	Schematic component library documentation, containing some component descriptions:
comments, keywords, reference to data sheets.

	*_cache.lib
	Schematic component library cache file, containing a copy of the components used in the schematic project.

	sym-lib-table
	Symbol library list (symbol library table):
list of symbol libraries available in the schematic editor.

Board editor files and folders:
	*.kicad_pcb
	Board file containing all info but the page layout.

	*.pretty
	Footprint library folders. The folder itself is the library.

	*.kicad_mod
	Footprint files, containing one footprint description each.

	*.brd
	Board file in the legacy format.
Can be read, but not written, by the current board editor.

	*.mod
	Footprint library in the legacy format.
Can be read by the footprint or the board editor, but not written.

	fp-lib-table
	Footprint library list (footprint library table):
list of footprint libraries (various formats) which are loaded
by the board or the footprint editor or CvPcb.

Common files:
	*.kicad_wks
	Page layout description files, for people who want a worksheet
with a custom look.

	*.net
	Netlist file created by the schematic, and read by the board editor.
This file is associated to the .cmp file, for users who prefer a separate file
for the component/footprint association.

Special file:
	*.cmp
	Association between components used in the schematic and their footprints.
It can be created by Pcbnew and imported by Eeschema.
Its purpose is to import changes from Pcbnew to Eeschema, for users
who change footprints inside Pcbnew (for instance using Exchange Footprints command)
and want to import these changes in schematic.

Other files:
They are generated by KiCad for fabrication or documentation.
	*.gbr
	Gerber files, for fabrication.

	*.drl
	Drill files (Excellon format), for fabrication.

	*.pos
	Position files (ASCII format), for automatic insertion machines.

	*.rpt
	Report files (ASCII format), for documentation.

	*.ps
	Plot files (Postscript), for documentation.

	*.pdf
	Plot files (PDF format), for documentation.

	*.svg
	Plot files (SVG format), for documentation.

	*.dxf
	Plot files (DXF format), for documentation.

	*.plt
	Plot files (HPGL format), for documentation.

Chapter 2. Installation and configuration

2.1. Display options

Hardware accelerated renderer in Pcbnew and Gerbview requires video card with
support of OpenGL v2.1 or higher.

2.2. Initialization of the default configuration

The default configuration file named kicad.pro is supplied in
kicad/template. It serves as a template for any new project and
is used to set the list of library files loaded by Eeschema.
A few other parameters for Pcbnew (default text size, default line
thickness, etc.) are also stored here.
Another default configuration file named fp-lib-table may exist.
It will be used only once to create a footprint library list;
otherwise the list will be created from scratch.

2.3. Modifying the default configuration

The default kicad.pro file can be freely modified, if desired.
Verify that you have write access to kicad/template/kicad.pro
Run KiCad and load kicad.pro project.
Run Eeschema via KiCad manager.
Modify and update the Eeschema configuration,
to set the list of libraries you want to use each
time you create new projects.
Run Pcbnew via KiCad manager.
Modify and update the Pcbnew configuration, especially the footprint library list.
Pcbnew will create or update a library list file called footprint library table.
There are 2 library list files (named fp-lib-table):
The first (located in the user home directory) is global for all projects and
the second (located in the project directory) is optional and specific to the project.

2.4. Paths configuration

In KiCad, one can define paths using an environment variable.
A few environment variables are internally defined by KiCad,
and can be used to define paths for libraries, 3D shapes, etc.
This is useful when absolute paths are not known or are subject to change (e.g.
when you transfer a project to a different computer), and also when one base
path is shared by many similar items. Consider the following which may be
installed in varying locations:
	
Eeschema component libraries

	
Pcbnew footprint libraries

	
3D shape files used in footprint definitions

For instance, the path to the connect.pretty footprint library,
when using the KISYSMOD environment variable, would be defined as
${KISYSMOD}/connect.pretty
This option allows you to define a path using an environment variable,
and add your own environment variables to define personal paths, if needed.
KiCad environment variables:
	KICAD_PTEMPLATES
	Templates used during project creation.
If you are using this variable, it must be defined.

	KICAD_SYMBOL_DIR
	Base path of symbol library files.

	KIGITHUB
	Frequently used in example footprint lib tables.
If you are using this variable, it must be defined.

	KISYS3DMOD
	Base path of 3D shapes files,
and must be defined because an absolute path is not usually used.

	KISYSMOD
	Base path of footprint library folders,
and must be defined if an absolute path is not used in footprint library names.

[image: images/configure_path_dlg.png]

Note also the environment variable KIPRJMOD is always internally
defined by KiCad, and is the current project absolute path.
For instance, ${KIPRJMOD}/connect.pretty is always the connect.pretty
folder (the pretty footprint library) found inside the current project folder.
If you modify the configuration of paths, please quit and restart KiCad
to avoid any issues in path handling.

2.5. Initialization of external utilities

You may define your favorite text editor and PDF viewer. These settings are
used whenever you want to open a text or PDF file.
These settings are accessible from the Preference menu:
[image: images/preferences_menu.png]

2.5.1. Selection of text editor

Before using a text editor to browse/edit files in the current project,
you must choose the text editor you want to use.
Select Preferences → Set Text Editor to set the text editor you want to use.

2.5.2. Selection of PDF viewer

You may use the default PDF viewer or choose your own.
To change from the default PDF viewer use
Preferences → PDF Viewer → Set PDF Viewer to choose the PDF viewer program,
then select Preferences → PDF Viewer → Favourite PDF Viewer.
On Linux the default PDF viewer is known to be fragile, so selecting
your own PDF viewer is recommended.

2.6. Creating a new project

In order to manage a KiCad project consisting of schematic files, printed
circuit board files, supplementary libraries, manufacturing files for
photo-tracing, drilling and automatic component placement files, it is
recommended to create a project as follows:
	
Create a working directory for the project (using KiCad or by other
 means).

	
In this directory, use KiCad to create a project file (file with
 extension .pro) via the "Create a new project"
 or "Create a new project from template" icon.

Warning
Use a unique directory for each KiCad project.
Do not combine multiple projects into a single directory.

KiCad creates a file with a .pro extension that maintains a number of
parameters for project management (such as the list of libraries
used in the schematic). Default names of both main schematic file
and printed circuit board file are
derived from the name of the project. Thus, if a project called
example.pro was created in a directory called example, the default
files will be created:
	example.pro
	Project management file.

	example.sch
	Main schematic file.

	example.kicad_pcb
	Printed circuit board file.

	example.net
	Netlist file.

	example.*
	Various files created by the other utility programs.

	example-cache.lib
	Library file automatically created and used by the
schematic editor containing a backup of the components used in the schematic.

2.7. Importing a foreign project

KiCad is able to import files created using other software packages. Currently
only Eagle 6.x or newer (XML format) is supported.
To import a foreign project, you need to select either a schematic or a board file in the import file browser dialog.
Imported schematic and board files should have the same base file name (e.g. project.sch and project.brd).
Once the requested files are selected, you will be asked to select a directory to store the imported files, which are going to be saved as a KiCad project.

Chapter 3. Using KiCad project manager

KiCad project manager (kicad or kicad.exe) is a tool which can easily run the other tools
(schematic and PCB editors, Gerber viewer and utility tools) when creating a design.
Running the other tools from KiCad manager has some advantages:
	
cross probing between schematic editor and board editor.

	
cross probing between schematic editor and footprint selector (CvPcb).

However, you can only edit the current project files. When these tools are run in
stand alone mode, you can open any file in any project but cross probing between
tools can give strange results.

3.1. Project manager window

[image: images/main_window.png]

The main KiCad window is composed of a project tree view, a launch pane
containing buttons used to run the various software tools, and a message
window. The menu and the toolbar can be used to create, read and save
project files.

3.2. Utility launch pane

KiCad allows you to run all standalone software tools that come with
it.
The launch pane is made of the 8 buttons below that correspond to the
following commands (1 to 8, from left to right):
[image: images/launch_pane.png]

	1
	Eeschema
	Schematic editor.

	2
	LibEdit
	Component editor and component library manager.

	3
	Pcbnew
	Board layout editor.

	4
	FootprintEditor
	Footprint editor and footprint library manager.

	5
	Gerbview
	Gerber file viewer. It can also display drill files.

	6
	Bitmap2component
	Tool to build a footprint or a component from
a B&W bitmap image to create logos.

	7
	Pcb Calculator
	Tool to calculate track widths, and many other
things.

	8
	Pl Editor
	Page layout editor, to create/customize frame
references.

3.3. Project tree view

[image: images/project_tree.png]

Double-clicking on the schematic file runs the schematic editor, in
this case opening the file pic_programmer.sch.
Double-clicking on the board file runs the layout editor, in this case
opening the file pic_programmer.kicad_pcb.
Right clicking on any of the files in the project tree allows generic
file manipulation.

3.4. Top toolbar

[image: images/main_toolbar.png]

KiCad top toolbar allows for some basic file operations:
	[image: images/icons/new_project.png]
	Create a new project. If the default template file (kicad.pro) is found in
kicad/template, it is copied into the working directory.

	[image: images/icons/new_project_with_template.png]
	Create a new project from an existing template.

	[image: images/icons/open_project.png]
	Open an existing project.

	[image: images/icons/save_project.png]
	Update and save the current project tree.

	[image: images/icons/zip.png]
	Create a zip archive of the whole project. This includes schematic
files, libraries, PCB, etc.

	[image: images/icons/reload.png]
	Refresh the tree view, sometimes needed after a tree change.

Chapter 4. Project templates

Using a project template facilitates setting up a new project with predefined
settings. Templates may contain pre-defined board outlines, connector
positions, schematic elements, design rules, etc. Complete schematics and/or
PCBs used as seed files for the new project may even be included.

4.1. Using templates

The File → New Project → New Project from Template menu will
open the Project Template Selector dialog:
[image: images/template_selector.png]

A single click on a template’s icon will display the template information,
and a further click on the OK button creates the new project. The template
files will be copied to the new project location and renamed to reflect
the new project’s name.
After selection of a template:
[image: images/template_selected.png]

4.2. Template Locations:

KiCad looks for template files in the following paths:
	
System templates:
 <kicad bin dir>/../share/kicad/template/

	
User templates:

	
Unix:
 ~/kicad/templates/

	
Windows:
 C:\Documents and Settings\username\My Documents\kicad\templates

	
Mac:
 ~/Documents/kicad/templates/

	
When the environment variable KICAD_PTEMPLATES is defined there is a
 third tab, Portable Templates, which lists templates found at the
 KICAD_PTEMPLATES path.

4.3. Creating templates

The template name is the directory name where the template
files are stored. The metadata directory is a subdirectory
named meta containing files describing the template.
All files and directories in a template are copied to the new project
path when a project is created using a template, except meta.
When a new project is created from a template, all files and directories
starting with the template name will be renamed with the new project file name,
excluding the file extension.
The metadata consists of one required file, and may contain optional files.
All files must be created by the user using a text editor or previous
KiCad project files, and placed into the required directory structure.
Here is an example showing project files for raspberrypi-gpio template:
[image: images/template_tree.png]

And the metadata files:
[image: images/template_tree_meta.png]

4.3.1. Required File:

	meta/info.html
	HTML-formatted information describing the template.

The <title> tag determines the actual name of the template that is exposed
to the user for template selection. Note that the project template name
will be cut off if it’s too long. Due to font kerning, typically 7 or 8
characters can be displayed.
Using HTML means that images can be easily in-lined without having to
invent a new scheme. Only basic HTML tags can be used in this document.
Here is a sample info.html file:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html;
charset=windows-1252">
<TITLE>Raspberry Pi - Expansion Board</TITLE>
<META NAME="GENERATOR" CONTENT="LibreOffice 3.6 (Windows)">
<META NAME="CREATED" CONTENT="0;0">
<META NAME="CHANGED" CONTENT="20121015;19015295">
</HEAD>
<BODY LANG="fr-FR" DIR="LTR">
<P>This project template is the basis of an expansion board for the
Raspberry Pi $25
ARM board.

This base project includes a PCB edge defined
as the same size as the Raspberry-Pi PCB with the connectors placed
correctly to align the two boards. All IO present on the Raspberry-Pi
board is connected to the project through the 0.1" expansion
headers.

The board outline looks like the following:
</P>
<P><IMG SRC="brd.png" NAME="brd" ALIGN=BOTTOM WIDTH=680 HEIGHT=378
BORDER=0>

</P>
<P>(c)2012 Brian Sidebotham
(c)2012 KiCad Developers</P>
</BODY>
</HTML>

4.3.2. Optional Files:

	meta/icon.png
	A 64 x 64 pixel PNG icon file which is used as a
clickable icon in the template selection dialog.

Any other image files used by meta/info.html, such as the image of the
board file in the dialog above, are placed in this folder as well.

Part I. Upgrading from Version 4 to Version 5

Changes were made to the behavior to KiCad during the version 5
development that can impact projects created with older versions
of KiCad. This section serves as a guide to ensure the smoothest
possible path when upgrading to version 5 of KiCad.

Chapter 5. Schematic Symbol Libraries

Schematic symbol libraries are no longer accessed using a symbol
(referred to as components in version 4) look up list. Symbol
libraries are now managed by a symbol library table that behaves
similarly to the footprint library table. This change is a significant
improvement, but some schematics may need manual intervention when being
converted to version 5.
In previous versions, KiCad used a list of library files to search when
locating symbols in the Eeschema file. When locating a symbol, each path
would be searched and the first library that held the symbol name
would be used.
From v5, KiCad symbol names are prefixed with a nickname, and a
lookup table matching
nicknames to library paths is used to locate the library which holds the
symbol. The table is called the symbol library table and built from
configuration files stored in the user’s KiCad configuration directory
and the currently loaded project directory.
To upgrade a KiCad project from v4 to v5, nicknames for all of the library
files need to be created and then schematic symbol names need to be prefixed
with the correct nickname.

5.1. Global Symbol Library Table.

Eeschema v5 will automatically create a global symbol table when
first started. You will be given a chance to skip this and create
your own global symbol table by hand. You only need to do this if
don’t use KiCad symbol libraries at all. Otherwise it is easier to
modify the automatically generated global symbol table.
Note
If you track the
symbol library repository,
changes made to the default global symbol library table are not
tracked by KiCad. You will have to manually keep the global symbol
library table up to date.

5.2. Symbol Library Table Mapping

Automatic remapping of symbols will be executed whenever a
schematic is opened that has not been remapped.
There are a few steps you should take ahead of time in order for the
remapping to be the most effective.
Note
If you have been using a development build of KiCad, copy the full
default global symbol library table file (sym-lib-table) from the
template folder installed with the KiCad libraries or from the
KiCad library repo
to your KiCad user configuration folder. This will replace the
empty one (most likely) created by Eeschema. If you do not do
this, you will most likely end up with a bunch of broken symbol
links.

Warning
Remapped schematics will not be compatible with older versions of
KiCad. The Remap Symbols dialog will make a backup of your schematic
files and you should do the same if you remap manually.

	
If possible, keep version 4 of KiCad installed on your system unless
 you have never used any of the symbol libraries distributed with KiCad.

	
If you get warning about missing libraries when you start version 4
 of Eeschema, make sure to fix the missing libraries if they contain
 symbols that are in the schematic before you attempt to remap your
 schematic. Otherwise, the correct symbol will not be found and you
 will end up with broken symbol links in your schematic. You can test
 this by left clicking on a symbol in the schematic and verifying
 that the symbol is not being loaded from the cache library. If a
 symbol is being loaded from the cache library, Eeschema cannot find
 your part in the system or project symbol libraries. If you need a
 cached part to be available to other projects on your system, you will
 need to integrate it into a system or project library manually.

	
If symbol recovery is required during the remapping process, do not
 dismiss it. Failure to recover symbols will result in broken symbol
 links or the wrong symbol being linked in the schematic.

	
During the remapping process, symbol libraries not found in the global
 symbol library table will be used to create a project specific symbol
 library table. You can move them manually to the global symbol
 library table if that is your preference.

	
For the most accurate remapping, create a project library by copying
 the project cache file (project-name-cache.lib) to a different file
 and add it to the top of the symbol library list. You must use a
 version of KiCad prior to the symbol library table implementation in
 order to do this.

Note
A tool has been provided to attempt to fix remapping issues. If there
are missing symbol library links in a schematic, they can be fixed by
opening the "Tools→Edit Symbol Library References…" menu entry and
clicking on the "Map Orphans" button.

5.3. Remapping Search Order

When remapping symbols, KiCad proceeds in the following order to assign
the library to a symbol:
	
Global Symbol Library Table: Symbols are preferentially mapped to the global symbol
 library table, if one exists.

	
Project specific libraries: Libraries listed in the project library list that are not
 in the global symbol library table are searched next.

	
Project cache file: If a symbol doesn’t exist in the listed libraries above,
 it is first rescued — a copy is made from the cache and placed in the proj-rescue.lib —  before the symbol is mapped to this new, rescue library.

5.4. Symbol Names and Symbol Library Nickname Limitations

Symbol names may not contain <SPACE>, ':', '/'.
Library nicknames may not contain <SPACE>, ':'.
Existing symbol names with these characters must be renamed by manually editing the
relevant schematic and library files.

Chapter 6. Symbol Cache Library Availability

The cache library is no longer shown in either the symbol library viewer or
the symbol library editor. The cache should never be edited because
any changes are overwritten by the next schematic save.

Chapter 7. Board File Format Changes

Several new features have been added to Pcbnew which impact the board file
format. Using these new features in board designs will prevent them from
being opened with previous versions of Pcbnew.
	
Rounded rectangle footprint pads.

	
Custom shape footprint pads.

	
Footprint pad names longer than four characters.

	
Keep out zones on more than a single layer.

	
3D models offset saved as millimeters instead of inches.

	
Footprint text locking.

7.1. Global Footprint Library Table.

If you track the
footprint library repository,
changes made to the default global footprint library table are not tracked
by KiCad. You will have to manually keep the global footprint library table
up to date.

OEBPS/images/icons/open_project.png

OEBPS/images/main_toolbar.png
1ee 28

OEBPS/images/icons/new_project_with_template.png

OEBPS/images/configure_path_dlg.png
(2] Environment Variable Configuration

Name: Path:
KICAD_PTEMPLATES /ust/local/share kicad/template/
KICAD_SYMBOLDIR /ust/local/share/ kicad!lirary/

KISYS30MOD Just/local/share/kicad/ 3emodels

OEBPS/images/launch_pane.png
el =

OEBPS/images/project_tree.png
———

IR peegremmericad.pe

=
piprogrammernet

[ergrmescs

I, picprogrammer-cache is

OEBPS/images/icons/reload.png

OEBPS/images/logo.png
@kicad

OEBPS/images/icons/new_project.png

OEBPS/images/main_window.png
e Kicsd (20180207 revision 17ces7a7a) master

Fle Vew Tools Browse Preferences Help

IEE a® &

- O
> s
IS peprogammenicaso

cpoammanet
55—

I pcprogrammer-cachelio

Salleall =)

GB R
Proct rame

home /orson/workspace/Kicad-master/ demos/pic_programmer/picprogrammerpro

OEBPS/images/icons/save_project.png

OEBPS/images/template_tree.png
|). modules

[0 meta
4)l template e
] raspberrypi-gpio.crp
i Arduino_As_Uno_R3 | raspberrypi-gpio.kicad_pch
1 Arduino_Fio] raspberrypi-gpio.net
|l Arduino_Mega R3 [£] L raspberrypi-gpio.pro
). Arduino_Micro L] raspberrypi-gpic.sch
i Arduino_Mini L] raspberrypi-gpio,stf

@ Ao L raspberrypi-gpio-cachelib
rduino_Nano

1 Arduino_Pro_Mini
. raspberrypi-gpio
L meta

). stm32f100-discovery-sh

OEBPS/images/template_selector.png
Project Template Selector ==

Systern Termplates

User Ternplates | Portable Templates

4
ARDUINO ARDUINO ARDUINO ARDUINO ARDUINO ARDUINO ARDUINO 4
UNO Fio MEGA MICRO MINI NANO Pro Mini s

Arduinoas ArduinoFio Arduino Arduino Arduino Arduino Arduino Pro Raspberry

Template Selector

Ternplates path

C:¥Program Files¥KiCad¥share¥kicad¥ternplate¥

OEBPS/images/template_tree_meta.png
» L modules

[brd.png
N B conpng
» i Arduino_As_Uno_R3 (&) infohtrml
> i Arduino_Fio

> i Arduino_Mega_R3
> i Arduino_Micro

> i Arduino_Mini

» i Arduino_Nano

» i Arduino_Pro_Mini

41l raspbertypi-gpio

Ul meta

. stma2100-discovery-ch

OEBPS/images/template_selected.png
Project Template Selector

System Templates | User Templates | Portable Templates|

UNO Fio MEGA MICRO MINI

Arduino as ArduinoFio Arduino Arduino

Ihe board outline Iooks Iike the following:

Ternplates path
C:¥Program Files¥KiCad¥share¥kicad¥ternplate¥

Arduino

NANO Pro Mini
Arduino Arduino Pro. Raspberry

[erowse || vaicare

T

OEBPS/images/preferences_menu.png
(] Kicad (2018-02-07 revision 17ce87a7al-master o

|/ et Tex Editor I
P System Default POF Viewer
[Fevourie PDF Viewer

=
eccB3-ppnet Hotkeys Options >

9= eccB3-ppsch -
_!: o &5 setLanguage > ‘

B ecct3-pp-cache

T ccci3-pn2-caq T ons Ocons >

OEBPS/images/icons/zip.png
2z,

