 KiCad PCB EDA Suite
MATRIX3x3< T > Class Template Reference

Class MATRIX3x3 describes a general 3x3 matrix. More...

#include <matrix3x3.h>

Public Member Functions

MATRIX3x3 ()
Constructor. More...

MATRIX3x3 (T a00, T a01, T a02, T a10, T a11, T a12, T a20, T a21, T a22)
Constructor. More...

void SetIdentity ()
Set the matrix to the identity matrix. More...

void SetTranslation (VECTOR2< T > aTranslation)
Set the translation components of the matrix. More...

VECTOR2< T > GetTranslation () const
Get the translation components of the matrix. More...

void SetRotation (T aAngle)
Set the rotation components of the matrix. More...

void SetScale (VECTOR2< T > aScale)
Set the scale components of the matrix. More...

VECTOR2< T > GetScale () const
Get the scale components of the matrix. More...

Determinant () const
Compute the determinant of the matrix. More...

MATRIX3x3 Inverse () const
Determine the inverse of the matrix. More...

MATRIX3x3 Transpose () const
Get the transpose of the matrix. More...

m_data 

Friends

std::ostream & operator (std::ostream &aStream, const MATRIX3x3< T > &aMatrix)
Output to a stream. More...

Detailed Description

template<class T> class MATRIX3x3< T >

Class MATRIX3x3 describes a general 3x3 matrix.

Any linear transformation in 2D can be represented by a homogeneous 3x3 transformation matrix. Given a vector x, the linear transformation with the transformation matrix M is given as

x' = M * x

To represent an affine transformation, homogeneous coordinates have to be used. That means the 2D-vector (x, y) has to be extended to a 3D-vector by a third component (x, y, 1).

Transformations can be easily combined by matrix multiplication.

A * (B * x ) = (A * B) * x ( A, B: transformation matrices, x: vector )

This class was implemented using templates, so flexible type combinations are possible.

Definition at line 55 of file matrix3x3.h.

◆ MATRIX3x3() [1/2]

template<class T >
 MATRIX3x3< T >::MATRIX3x3 ( )

Constructor.

Initialize all matrix members to zero.

Definition at line 184 of file matrix3x3.h.

185 {
186  for( int j = 0; j < 3; j++ )
187  {
188  for( int i = 0; i < 3; i++ )
189  {
190  m_data[i][j] = 0.0;
191  }
192  }
193 }
T m_data
Definition: matrix3x3.h:64
size_t i
Definition: json11.cpp:597

◆ MATRIX3x3() [2/2]

template<class T>
 MATRIX3x3< T >::MATRIX3x3 ( T a00, T a01, T a02, T a10, T a11, T a12, T a20, T a21, T a22 )

Constructor.

Initialize with given matrix members

Parameters
 a00 is the component [0,0]. a01 is the component [0,1]. a02 is the component [0,2]. a10 is the component [1,0]. a11 is the component [1,1]. a12 is the component [1,2]. a20 is the component [2,0]. a21 is the component [2,1]. a22 is the component [2,2].

Definition at line 197 of file matrix3x3.h.

198 {
199  m_data = a00;
200  m_data = a01;
201  m_data = a02;
202
203  m_data = a10;
204  m_data = a11;
205  m_data = a12;
206
207  m_data = a20;
208  m_data = a21;
209  m_data = a22;
210 }
T m_data
Definition: matrix3x3.h:64

◆ Determinant()

template<class T >
 T MATRIX3x3< T >::Determinant ( ) const

Compute the determinant of the matrix.

Returns
the determinant value.

Definition at line 310 of file matrix3x3.h.

311 {
312  return m_data * ( m_data * m_data - m_data * m_data )
313  - m_data * ( m_data * m_data - m_data * m_data )
314  + m_data * ( m_data * m_data - m_data * m_data );
315 }
T m_data
Definition: matrix3x3.h:64

◆ GetScale()

template<class T >
 VECTOR2< T > MATRIX3x3< T >::GetScale ( ) const

Get the scale components of the matrix.

Returns
the scale factors, specified as 2D-vector.

Definition at line 269 of file matrix3x3.h.

270 {
271  VECTOR2<T> result( m_data, m_data );
272
273  return result;
274 }
Class VECTOR2 defines a general 2D-vector/point.
Definition: vector2d.h:61
T m_data
Definition: matrix3x3.h:64

◆ GetTranslation()

template<class T >
 VECTOR2< T > MATRIX3x3< T >::GetTranslation ( ) const

Get the translation components of the matrix.

Returns
is the translation (2D-vector).

Definition at line 238 of file matrix3x3.h.

239 {
240  VECTOR2<T> result;
241  result.x = m_data;
242  result.y = m_data;
243
244  return result;
245 }
Class VECTOR2 defines a general 2D-vector/point.
Definition: vector2d.h:61
T m_data
Definition: matrix3x3.h:64

◆ Inverse()

template<class T >
 MATRIX3x3< T > MATRIX3x3< T >::Inverse ( ) const

Determine the inverse of the matrix.

The inverse of a transformation matrix can be used to revert a transformation.

x = Minv * ( M * x ) ( M: transformation matrix, Minv: inverse transformation matrix, x: vector)

Returns
the inverse matrix.

Definition at line 343 of file matrix3x3.h.

344 {
345  MATRIX3x3<T> result;
346
347  result.m_data = m_data * m_data - m_data * m_data;
348  result.m_data = m_data * m_data - m_data * m_data;
349  result.m_data = m_data * m_data - m_data * m_data;
350
351  result.m_data = m_data * m_data - m_data * m_data;
352  result.m_data = m_data * m_data - m_data * m_data;
353  result.m_data = m_data * m_data - m_data * m_data;
354
355  result.m_data = m_data * m_data - m_data * m_data;
356  result.m_data = m_data * m_data - m_data * m_data;
357  result.m_data = m_data * m_data - m_data * m_data;
358
359  return result * ( 1.0 / Determinant() );
360 }
T m_data
Definition: matrix3x3.h:64
T Determinant() const
Compute the determinant of the matrix.
Definition: matrix3x3.h:310
Class MATRIX3x3 describes a general 3x3 matrix.
Definition: matrix3x3.h:55

◆ SetIdentity()

template<class T >
 void MATRIX3x3< T >::SetIdentity ( void )

Set the matrix to the identity matrix.

The diagonal components of the matrix are set to 1.

Definition at line 214 of file matrix3x3.h.

215 {
216  for( int j = 0; j < 3; j++ )
217  {
218  for( int i = 0; i < 3; i++ )
219  {
220  if( i == j )
221  m_data[i][j] = 1.0;
222  else
223  m_data[i][j] = 0.0;
224  }
225  }
226 }
T m_data
Definition: matrix3x3.h:64
size_t i
Definition: json11.cpp:597

◆ SetRotation()

template<class T>
 void MATRIX3x3< T >::SetRotation ( T aAngle )

Set the rotation components of the matrix.

The angle needs to have a positive value for an anti-clockwise rotation.

Parameters
 aAngle is the rotation angle in [rad].

Definition at line 249 of file matrix3x3.h.

250 {
251  T cosValue = cos( aAngle );
252  T sinValue = sin( aAngle );
253  m_data = cosValue;
254  m_data = -sinValue;
255  m_data = sinValue;
256  m_data = cosValue;
257 }
T m_data
Definition: matrix3x3.h:64

◆ SetScale()

template<class T>
 void MATRIX3x3< T >::SetScale ( VECTOR2< T > aScale )

Set the scale components of the matrix.

Parameters
 aScale contains the scale factors, specified as 2D-vector.

Definition at line 261 of file matrix3x3.h.

262 {
263  m_data = aScale.x;
264  m_data = aScale.y;
265 }
T m_data
Definition: matrix3x3.h:64

◆ SetTranslation()

template<class T>
 void MATRIX3x3< T >::SetTranslation ( VECTOR2< T > aTranslation )

Set the translation components of the matrix.

Parameters
 aTranslation is the translation, specified as 2D-vector.

Definition at line 230 of file matrix3x3.h.

231 {
232  m_data = aTranslation.x;
233  m_data = aTranslation.y;
234 }
T m_data
Definition: matrix3x3.h:64

◆ Transpose()

template<class T >
 MATRIX3x3< T > MATRIX3x3< T >::Transpose ( ) const

Get the transpose of the matrix.

Returns
the transpose matrix.

Definition at line 364 of file matrix3x3.h.

365 {
366  MATRIX3x3<T> result;
367
368  for( int i = 0; i < 3; i++ )
369  {
370  for( int j = 0; j < 3; j++ )
371  {
372  result.m_data[j][i] = m_data[i][j];
373  }
374  }
375
376  return result;
377 }
T m_data
Definition: matrix3x3.h:64
size_t i
Definition: json11.cpp:597
Class MATRIX3x3 describes a general 3x3 matrix.
Definition: matrix3x3.h:55

◆ operator

template<class T>
 std::ostream& operator ( std::ostream & aStream, const MATRIX3x3< T > & aMatrix )
friend

Output to a stream.

◆ m_data

template<class T>
 T MATRIX3x3< T >::m_data

Definition at line 64 of file matrix3x3.h.

The documentation for this class was generated from the following file: