KiCad PCB EDA Suite
C3D_RENDER_RAYTRACING Class Reference

#include <c3d_render_raytracing.h>

Inheritance diagram for C3D_RENDER_RAYTRACING:
C3D_RENDER_BASE

Public Member Functions

 C3D_RENDER_RAYTRACING (CINFO3D_VISU &aSettings)
 
 ~C3D_RENDER_RAYTRACING ()
 
void SetCurWindowSize (const wxSize &aSize) override
 SetCurWindowSize - Before each render, the canvas will tell the render what is the size of its windows, so render can take actions if it changed. More...
 
bool Redraw (bool aIsMoving, REPORTER *aStatusTextReporter) override
 Redraw - Ask to redraw the view. More...
 
int GetWaitForEditingTimeOut () override
 GetWaitForEditingTimeOut - Give the interface the time (in ms) that it should wait for editing or movements before (this works for display preview mode) More...
 
void ReloadRequest ()
 ReloadRequest - !TODO: this must be reviewed to add flags to improve specific render. More...
 
bool IsReloadRequestPending () const
 IsReloadRequestPending - Query if there is a pending reload request. More...
 

Protected Attributes

CINFO3D_VISUm_settings
 settings refrence in use for this render More...
 
bool m_is_opengl_initialized
 flag if the opengl specific for this render was already initialized More...
 
bool m_reloadRequested
 !TODO: this must be reviewed in order to flag change types More...
 
wxSize m_windowSize
 The window size that this camera is working. More...
 

Static Protected Attributes

static const wxChar * m_logTrace = wxT( "KI_TRACE_3D_RENDER" )
 Trace mask used to enable or disable the trace output of this class. More...
 

Private Member Functions

bool initializeOpenGL ()
 
void initializeNewWindowSize ()
 
void opengl_init_pbo ()
 
void opengl_delete_pbo ()
 
void reload (REPORTER *aStatusTextReporter)
 
void restart_render_state ()
 
void rt_render_tracing (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_post_process_shade (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_post_process_blur_finish (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_trace_block (GLubyte *ptrPBO, signed int iBlock)
 
void rt_final_color (GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
 
void rt_shades_packet (const SFVEC3F *bgColorY, const RAY *aRayPkt, HITINFO_PACKET *aHitPacket, bool is_testShadow, SFVEC3F *aOutHitColor)
 
void rt_trace_AA_packet (const SFVEC3F *aBgColorY, const HITINFO_PACKET *aHitPck_X0Y0, const HITINFO_PACKET *aHitPck_AA_X1Y1, const RAY *aRayPck, SFVEC3F *aOutHitColor)
 
void setupMaterials ()
 
SFVEC3F shadeHit (const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
 
void create_3d_object_from (CCONTAINER &aDstContainer, const COBJECT2D *aObject2D, float aZMin, float aZMax, const CMATERIAL *aMaterial, const SFVEC3F &aObjColor)
 Function create_3d_object_from. More...
 
void add_3D_vias_and_pads_to_container ()
 
void insert3DViaHole (const VIA *aVia)
 
void insert3DPadHole (const D_PAD *aPad)
 
void load_3D_models ()
 
void add_3D_models (const S3DMODEL *a3DModel, const glm::mat4 &aModelMatrix)
 
void initialize_block_positions ()
 
void render (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void render_preview (GLubyte *ptrPBO)
 

Private Attributes

struct {
   CBLINN_PHONG_MATERIAL   m_Paste
 
   CBLINN_PHONG_MATERIAL   m_SilkS
 
   CBLINN_PHONG_MATERIAL   m_SolderMask
 
   CBLINN_PHONG_MATERIAL   m_EpoxyBoard
 
   CBLINN_PHONG_MATERIAL   m_Copper
 
   CBLINN_PHONG_MATERIAL   m_Floor
 
m_materials
 
CBOARDNORMAL m_board_normal_perturbator
 
CCOPPERNORMAL m_copper_normal_perturbator
 
CSOLDERMASKNORMAL m_solder_mask_normal_perturbator
 
CPLASTICNORMAL m_plastic_normal_perturbator
 
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
 
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
 
bool m_isPreview
 
RT_RENDER_STATE m_rt_render_state
 State used on quality render. More...
 
unsigned long int m_stats_start_rendering_time
 Time that the render starts. More...
 
long m_nrBlocksRenderProgress
 Save the number of blocks progress of the render. More...
 
CPOSTSHADER_SSAO m_postshader_ssao
 
CLIGHTCONTAINER m_lights
 
CDIRECTIONALLIGHTm_camera_light
 
bool m_opengl_support_vertex_buffer_object
 
GLuint m_pboId
 
GLuint m_pboDataSize
 
CCONTAINER m_object_container
 
CCONTAINER2D m_containerWithObjectsToDelete
 This will store the list of created objects special for RT, that will be clear in the end. More...
 
CCONTAINER2Dm_outlineBoard2dObjects
 
CGENERICACCELERATORm_accelerator
 
SFVEC3F m_BgColorTop_LinearRGB
 
SFVEC3F m_BgColorBot_LinearRGB
 
wxSize m_oldWindowsSize
 used to see if the windows size changed More...
 
std::vector< SFVEC2UIm_blockPositions
 this encodes the Morton code positions More...
 
std::vector< bool > m_blockPositionsWasProcessed
 this flags if a position was already processed (cleared each new render) More...
 
std::vector< SFVEC2UIm_blockPositionsFast
 this encodes the Morton code positions (on fast preview mode) More...
 
SFVEC2UI m_realBufferSize
 
SFVEC2UI m_fastPreviewModeSize
 
HITINFO_PACKETm_firstHitinfo
 
SFVEC3Fm_shaderBuffer
 
unsigned int m_xoffset
 
unsigned int m_yoffset
 
unsigned int m_stats_converted_dummy_to_plane
 
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
 
MAP_MODEL_MATERIALS m_model_materials
 Stores materials of the 3D models. More...
 

Detailed Description

Definition at line 59 of file c3d_render_raytracing.h.

Constructor & Destructor Documentation

C3D_RENDER_RAYTRACING::C3D_RENDER_RAYTRACING ( CINFO3D_VISU aSettings)
explicit

Definition at line 49 of file c3d_render_raytracing.cpp.

References m_accelerator, m_camera_light, m_firstHitinfo, m_isPreview, C3D_RENDER_BASE::m_logTrace, m_nrBlocksRenderProgress, m_oldWindowsSize, m_opengl_support_vertex_buffer_object, m_outlineBoard2dObjects, m_pboDataSize, m_pboId, m_rt_render_state, m_shaderBuffer, m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, m_stats_start_rendering_time, m_xoffset, m_yoffset, and RT_RENDER_STATE_MAX.

49  :
50  C3D_RENDER_BASE( aSettings ),
51  m_postshader_ssao( aSettings.CameraGet() )
52 {
53  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::C3D_RENDER_RAYTRACING" ) );
54 
56  m_pboId = GL_NONE;
57  m_pboDataSize = 0;
58  m_accelerator = NULL;
61  m_oldWindowsSize.x = 0;
62  m_oldWindowsSize.y = 0;
64  m_firstHitinfo = NULL;
65  m_shaderBuffer = NULL;
66  m_camera_light = NULL;
67 
68  m_xoffset = 0;
69  m_yoffset = 0;
70 
71  m_isPreview = false;
72  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an initial invalid state
75 }
long m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
CPOSTSHADER_SSAO m_postshader_ssao
wxSize m_oldWindowsSize
used to see if the windows size changed
HITINFO_PACKET * m_firstHitinfo
unsigned int m_stats_converted_dummy_to_plane
CGENERICACCELERATOR * m_accelerator
C3D_RENDER_BASE(CINFO3D_VISU &aSettings)
RT_RENDER_STATE m_rt_render_state
State used on quality render.
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
CDIRECTIONALLIGHT * m_camera_light
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
unsigned long int m_stats_start_rendering_time
Time that the render starts.
CCONTAINER2D * m_outlineBoard2dObjects
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.
C3D_RENDER_RAYTRACING::~C3D_RENDER_RAYTRACING ( )

Definition at line 78 of file c3d_render_raytracing.cpp.

References m_accelerator, C3D_RENDER_BASE::m_logTrace, m_outlineBoard2dObjects, m_shaderBuffer, and opengl_delete_pbo().

79 {
80  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::~C3D_RENDER_RAYTRACING" ) );
81 
82  delete m_accelerator;
83  m_accelerator = NULL;
84 
87 
88  delete[] m_shaderBuffer;
89  m_shaderBuffer = NULL;
90 
92 }
CGENERICACCELERATOR * m_accelerator
CCONTAINER2D * m_outlineBoard2dObjects
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.

Member Function Documentation

void C3D_RENDER_RAYTRACING::add_3D_models ( const S3DMODEL a3DModel,
const glm::mat4 &  aModelMatrix 
)
private

Definition at line 1300 of file c3d_render_createscene.cpp.

References abs, CGENERICCONTAINER::Add(), ConvertSRGBToLinear(), FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_PROCEDURAL_TEXTURES, CINFO3D_VISU::GetFlag(), SMATERIAL::m_Ambient, m_brushed_metal_normal_perturbator, SMESH::m_Color, SMATERIAL::m_Diffuse, SMATERIAL::m_Emissive, SMESH::m_FaceIdx, SMESH::m_FaceIdxSize, SMESH::m_MaterialIdx, S3DMODEL::m_Materials, S3DMODEL::m_MaterialsSize, S3DMODEL::m_Meshes, S3DMODEL::m_MeshesSize, m_model_materials, SMESH::m_Normals, m_object_container, m_plastic_normal_perturbator, m_plastic_shine_normal_perturbator, SMESH::m_Positions, C3D_RENDER_BASE::m_settings, SMATERIAL::m_Shininess, SMATERIAL::m_Specular, SMATERIAL::m_Transparency, SMESH::m_VertexSize, MATERIAL_MODE_CAD_MODE, MATERIAL_MODE_NORMAL, MaterialDiffuseToColorCAD(), CINFO3D_VISU::MaterialModeGet(), RGBtoGray(), CTRIANGLE::SetColor(), COBJECT::SetMaterial(), and CMATERIAL::SetNormalPerturbator().

Referenced by load_3D_models().

1302 {
1303 
1304  // Validate a3DModel pointers
1305  wxASSERT( a3DModel != NULL );
1306 
1307  if( a3DModel == NULL )
1308  return;
1309 
1310  wxASSERT( a3DModel->m_Materials != NULL );
1311  wxASSERT( a3DModel->m_Meshes != NULL );
1312  wxASSERT( a3DModel->m_MaterialsSize > 0 );
1313  wxASSERT( a3DModel->m_MeshesSize > 0 );
1314 
1315  if( (a3DModel->m_Materials != NULL) && (a3DModel->m_Meshes != NULL) &&
1316  (a3DModel->m_MaterialsSize > 0) && (a3DModel->m_MeshesSize > 0) )
1317  {
1318 
1319  MODEL_MATERIALS *materialVector;
1320 
1321  // Try find if the materials already exists in the map list
1322  if( m_model_materials.find( a3DModel ) != m_model_materials.end() )
1323  {
1324  // Found it, so get the pointer
1325  materialVector = &m_model_materials[a3DModel];
1326  }
1327  else
1328  {
1329  // Materials was not found in the map, so it will create a new for
1330  // this model.
1331 
1332  m_model_materials[a3DModel] = MODEL_MATERIALS();
1333  materialVector = &m_model_materials[a3DModel];
1334 
1335  materialVector->resize( a3DModel->m_MaterialsSize );
1336 
1337  for( unsigned int imat = 0;
1338  imat < a3DModel->m_MaterialsSize;
1339  ++imat )
1340  {
1342  {
1343  const SMATERIAL &material = a3DModel->m_Materials[imat];
1344 
1345  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtaW4oc3FydCh4LTAuMzUpKjAuNDAtMC4wNSwxLjApIiwiY29sb3IiOiIjMDAwMDAwIn0seyJ0eXBlIjoxMDAwLCJ3aW5kb3ciOlsiMC4wNzA3NzM2NzMyMzY1OTAxMiIsIjEuNTY5NTcxNjI5MjI1NDY5OCIsIi0wLjI3NDYzNTMyMTc1OTkyOTMiLCIwLjY0NzcwMTg4MTkyNTUzNjIiXSwic2l6ZSI6WzY0NCwzOTRdfV0-
1346 
1347  float reflectionFactor = 0.0f;
1348 
1349  if( (material.m_Shininess - 0.35f) > FLT_EPSILON )
1350  {
1351  reflectionFactor = glm::clamp( glm::sqrt( (material.m_Shininess - 0.35f) ) *
1352  0.40f - 0.05f,
1353  0.0f,
1354  0.5f );
1355  }
1356 
1357  CBLINN_PHONG_MATERIAL &blinnMaterial = (*materialVector)[imat];
1358 
1359  SFVEC3F ambient;
1360 
1362  {
1363  // apply a gain to the (dark) ambient colors
1364 
1365  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMi4wMCkpLTAuMzUiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0xLjI0OTUwNTMzOTIyMzYyIiwiMS42Nzc4MzQ0MTg1NjcxODQzIiwiLTAuNDM1NTA0NjQyODEwOTMwMjYiLCIxLjM2NTkzNTIwODEzNzI1OCJdLCJzaXplIjpbNjQ5LDM5OV19XQ--
1366  // ambient = glm::max( (glm::pow((material.m_Ambient + 0.20f), SFVEC3F(1.0f / 2.00f)) - SFVEC3F(0.35f)), material.m_Ambient );
1367 
1368  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMS41OCkpLTAuMzUiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0xLjI0OTUwNTMzOTIyMzYyIiwiMS42Nzc4MzQ0MTg1NjcxODQzIiwiLTAuNDM1NTA0NjQyODEwOTMwMjYiLCIxLjM2NTkzNTIwODEzNzI1OCJdLCJzaXplIjpbNjQ5LDM5OV19XQ--
1369  //ambient = glm::max( (glm::pow((material.m_Ambient + 0.20f), SFVEC3F(1.0f / 1.58f)) - SFVEC3F(0.35f)), material.m_Ambient );
1370 
1371  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMS41NCkpLTAuMzQiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0yLjcyMTA5NTg0MjA1MDYwNSIsIjEuODUyODcyNTI5NDk3NTIyMyIsIi0xLjQyMTM3NjAxOTkyOTA4MDYiLCIxLjM5MzM3Mzc0NzE3NzQ2MTIiXSwic2l6ZSI6WzY0OSwzOTldfV0-
1372  ambient = ConvertSRGBToLinear(
1373  glm::pow((material.m_Ambient + 0.30f), SFVEC3F(1.0f / 1.54f)) - SFVEC3F(0.34f) );
1374  }
1375  else
1376  {
1377  ambient = ConvertSRGBToLinear( material.m_Ambient );
1378  }
1379 
1380 
1381  blinnMaterial = CBLINN_PHONG_MATERIAL(
1382  ambient,
1383  ConvertSRGBToLinear( material.m_Emissive ),
1384  ConvertSRGBToLinear( material.m_Specular ),
1385  material.m_Shininess * 180.0f,
1386  material.m_Transparency,
1387  reflectionFactor );
1388 
1390  {
1391  // Guess material type and apply a normal perturbator
1392 
1393  if( ( RGBtoGray(material.m_Diffuse) < 0.3f ) &&
1394  ( material.m_Shininess < 0.36f ) &&
1395  ( material.m_Transparency == 0.0f ) &&
1396  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) < 0.15f) &&
1397  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) < 0.15f) &&
1398  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) < 0.15f) ) )
1399  {
1400  // This may be a black plastic..
1401 
1402  if( material.m_Shininess < 0.26f )
1404  else
1406  }
1407  else
1408  {
1409  if( ( RGBtoGray(material.m_Diffuse) > 0.3f ) &&
1410  ( material.m_Shininess < 0.30f ) &&
1411  ( material.m_Transparency == 0.0f ) &&
1412  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) > 0.25f) ||
1413  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) > 0.25f) ||
1414  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) > 0.25f) ) )
1415  {
1416  // This may be a color plastic ...
1418  }
1419  else
1420  {
1421  if( ( RGBtoGray(material.m_Diffuse) > 0.6f ) &&
1422  ( material.m_Shininess > 0.35f ) &&
1423  ( material.m_Transparency == 0.0f ) &&
1424  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) < 0.40f) &&
1425  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) < 0.40f) &&
1426  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) < 0.40f) ) )
1427  {
1428  // This may be a brushed metal
1430  }
1431  }
1432  }
1433  }
1434  }
1435  else
1436  {
1437  (*materialVector)[imat] = CBLINN_PHONG_MATERIAL( SFVEC3F( 0.2f ),
1438  SFVEC3F( 0.0f ),
1439  SFVEC3F( 0.0f ),
1440  0.0f,
1441  0.0f,
1442  0.0f );
1443  }
1444  }
1445  }
1446 
1447  const glm::mat3 normalMatrix = glm::transpose( glm::inverse( glm::mat3( aModelMatrix ) ) );
1448 
1449  for( unsigned int mesh_i = 0;
1450  mesh_i < a3DModel->m_MeshesSize;
1451  ++mesh_i )
1452  {
1453  const SMESH &mesh = a3DModel->m_Meshes[mesh_i];
1454 
1455  // Validate the mesh pointers
1456  wxASSERT( mesh.m_Positions != NULL );
1457  wxASSERT( mesh.m_FaceIdx != NULL );
1458  wxASSERT( mesh.m_Normals != NULL );
1459  wxASSERT( mesh.m_FaceIdxSize > 0 );
1460  wxASSERT( (mesh.m_FaceIdxSize % 3) == 0 );
1461 
1462 
1463  if( (mesh.m_Positions != NULL) &&
1464  (mesh.m_Normals != NULL) &&
1465  (mesh.m_FaceIdx != NULL) &&
1466  (mesh.m_FaceIdxSize > 0) &&
1467  (mesh.m_VertexSize > 0) &&
1468  ((mesh.m_FaceIdxSize % 3) == 0) &&
1469  (mesh.m_MaterialIdx < a3DModel->m_MaterialsSize) )
1470  {
1471  const CBLINN_PHONG_MATERIAL &blinn_material = (*materialVector)[mesh.m_MaterialIdx];
1472 
1473  // Add all face triangles
1474  for( unsigned int faceIdx = 0;
1475  faceIdx < mesh.m_FaceIdxSize;
1476  faceIdx += 3 )
1477  {
1478  const unsigned int idx0 = mesh.m_FaceIdx[faceIdx + 0];
1479  const unsigned int idx1 = mesh.m_FaceIdx[faceIdx + 1];
1480  const unsigned int idx2 = mesh.m_FaceIdx[faceIdx + 2];
1481 
1482  wxASSERT( idx0 < mesh.m_VertexSize );
1483  wxASSERT( idx1 < mesh.m_VertexSize );
1484  wxASSERT( idx2 < mesh.m_VertexSize );
1485 
1486  if( ( idx0 < mesh.m_VertexSize ) &&
1487  ( idx1 < mesh.m_VertexSize ) &&
1488  ( idx2 < mesh.m_VertexSize ) )
1489  {
1490  const SFVEC3F &v0 = mesh.m_Positions[idx0];
1491  const SFVEC3F &v1 = mesh.m_Positions[idx1];
1492  const SFVEC3F &v2 = mesh.m_Positions[idx2];
1493 
1494  const SFVEC3F &n0 = mesh.m_Normals[idx0];
1495  const SFVEC3F &n1 = mesh.m_Normals[idx1];
1496  const SFVEC3F &n2 = mesh.m_Normals[idx2];
1497 
1498  // Transform vertex with the model matrix
1499  const SFVEC3F vt0 = SFVEC3F( aModelMatrix * glm::vec4( v0, 1.0f) );
1500  const SFVEC3F vt1 = SFVEC3F( aModelMatrix * glm::vec4( v1, 1.0f) );
1501  const SFVEC3F vt2 = SFVEC3F( aModelMatrix * glm::vec4( v2, 1.0f) );
1502 
1503  const SFVEC3F nt0 = glm::normalize( SFVEC3F( normalMatrix * n0 ) );
1504  const SFVEC3F nt1 = glm::normalize( SFVEC3F( normalMatrix * n1 ) );
1505  const SFVEC3F nt2 = glm::normalize( SFVEC3F( normalMatrix * n2 ) );
1506 
1507  CTRIANGLE *newTriangle = new CTRIANGLE( vt0, vt2, vt1,
1508  nt0, nt2, nt1 );
1509 
1510 
1511 
1512  m_object_container.Add( newTriangle );
1513  newTriangle->SetMaterial( (const CMATERIAL *)&blinn_material );
1514 
1515  if( mesh.m_Color == NULL )
1516  {
1517  const SFVEC3F diffuseColor =
1518  a3DModel->m_Materials[mesh.m_MaterialIdx].m_Diffuse;
1519 
1521  newTriangle->SetColor( ConvertSRGBToLinear( MaterialDiffuseToColorCAD( diffuseColor ) ) );
1522  else
1523  newTriangle->SetColor( ConvertSRGBToLinear( diffuseColor ) );
1524  }
1525  else
1526  {
1528  newTriangle->SetColor( ConvertSRGBToLinear( MaterialDiffuseToColorCAD( mesh.m_Color[idx0] ) ),
1531  else
1532  newTriangle->SetColor( ConvertSRGBToLinear( mesh.m_Color[idx0] ),
1533  ConvertSRGBToLinear( mesh.m_Color[idx1] ),
1534  ConvertSRGBToLinear( mesh.m_Color[idx2] ) );
1535  }
1536  }
1537  }
1538  }
1539  }
1540  }
1541 }
SFVEC3F * m_Normals
Vertex normals array.
Definition: c3dmodel.h:80
float RGBtoGray(const SFVEC3F &aColor)
Definition: 3d_math.h:147
SFVEC3F m_Ambient
Definition: c3dmodel.h:39
CPLASTICNORMAL m_plastic_normal_perturbator
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
MATERIAL_MODE MaterialModeGet() const
MaterialModeGet.
Definition: cinfo3d_visu.h:246
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
float m_Transparency
1.0 is completely transparent, 0.0 completely opaque
Definition: c3dmodel.h:44
void SetNormalPerturbator(const CPROCEDURALGENERATOR *aPerturbator)
Definition: cmaterial.h:220
SFVEC3F * m_Positions
Vertex position array.
Definition: c3dmodel.h:79
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define abs(a)
Definition: auxiliary.h:84
Per-vertex normal/color/texcoors structure.
Definition: c3dmodel.h:76
SMESH * m_Meshes
The meshes list of this model.
Definition: c3dmodel.h:93
unsigned int m_FaceIdxSize
Number of elements of the m_FaceIdx array.
Definition: c3dmodel.h:83
std::vector< CBLINN_PHONG_MATERIAL > MODEL_MATERIALS
Vector of materials.
void SetColor(const SFVEC3F &aColor)
Definition: ctriangle.cpp:161
unsigned int m_VertexSize
Number of vertex in the arrays.
Definition: c3dmodel.h:78
Blinn Phong based material https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model.
Definition: cmaterial.h:248
SFVEC3F * m_Color
Vertex color array, can be NULL.
Definition: c3dmodel.h:82
Use a gray shading based on diffuse material.
Definition: 3d_enums.h:95
float m_Shininess
Definition: c3dmodel.h:43
unsigned int m_MaterialsSize
Number of materials in the material array.
Definition: c3dmodel.h:95
A triangle object.
Definition: ctriangle.h:42
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
Use all material properties from model file.
Definition: 3d_enums.h:93
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
SFVEC3F MaterialDiffuseToColorCAD(const SFVEC3F &aDiffuseColor)
Definition: 3d_math.h:154
SFVEC3F m_Emissive
Definition: c3dmodel.h:41
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
unsigned int m_MaterialIdx
Material Index to be used in this mesh (must be < m_MaterialsSize )
Definition: c3dmodel.h:85
SMATERIAL * m_Materials
The materials list of this model.
Definition: c3dmodel.h:96
SFVEC3F m_Diffuse
Default diffuse color if m_Color is NULL.
Definition: c3dmodel.h:40
unsigned int * m_FaceIdx
Triangle Face Indexes.
Definition: c3dmodel.h:84
unsigned int m_MeshesSize
Number of meshes in the array.
Definition: c3dmodel.h:92
MAP_MODEL_MATERIALS m_model_materials
Stores materials of the 3D models.
SFVEC3F m_Specular
Definition: c3dmodel.h:42
void C3D_RENDER_RAYTRACING::add_3D_vias_and_pads_to_container ( )
private

Definition at line 1169 of file c3d_render_createscene.cpp.

References CINFO3D_VISU::GetBoard(), insert3DPadHole(), insert3DViaHole(), BOARD::m_Modules, C3D_RENDER_BASE::m_settings, BOARD::m_Track, TRACK::Next(), MODULE::Next(), D_PAD::Next(), PAD_ATTRIB_HOLE_NOT_PLATED, and PCB_VIA_T.

Referenced by reload().

1170 {
1171  // Insert plated vertical holes inside the board
1172  // /////////////////////////////////////////////////////////////////////////
1173 
1174  // Insert vias holes (vertical cylinders)
1175  for( const TRACK* track = m_settings.GetBoard()->m_Track;
1176  track;
1177  track = track->Next() )
1178  {
1179  if( track->Type() == PCB_VIA_T )
1180  {
1181  const VIA *via = static_cast<const VIA*>(track);
1182  insert3DViaHole( via );
1183  }
1184  }
1185 
1186  // Insert pads holes (vertical cylinders)
1187  for( const MODULE* module = m_settings.GetBoard()->m_Modules;
1188  module;
1189  module = module->Next() )
1190  {
1191  for( const D_PAD* pad = module->PadsList(); pad; pad = pad->Next() )
1192  if( pad->GetAttribute () != PAD_ATTRIB_HOLE_NOT_PLATED )
1193  {
1194  insert3DPadHole( pad );
1195  }
1196  }
1197 }
like PAD_STANDARD, but not plated mechanical use only, no connection allowed
Definition: pad_shapes.h:65
MODULE * Next() const
Definition: class_module.h:100
void insert3DViaHole(const VIA *aVia)
CINFO3D_VISU & m_settings
settings refrence in use for this render
D_PAD * Next() const
Definition: class_pad.h:154
TRACK * Next() const
Definition: class_track.h:98
DLIST< MODULE > m_Modules
Definition: class_board.h:245
class VIA, a via (like a track segment on a copper layer)
Definition: typeinfo.h:108
DLIST< TRACK > m_Track
Definition: class_board.h:246
void insert3DPadHole(const D_PAD *aPad)
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
void C3D_RENDER_RAYTRACING::create_3d_object_from ( CCONTAINER aDstContainer,
const COBJECT2D aObject2D,
float  aZMin,
float  aZMax,
const CMATERIAL aMaterial,
const SFVEC3F aObjColor 
)
private

Function create_3d_object_from.

Creates on or more 3D objects form a 2D object and Z positions. It try optimize some types of objects that will be faster to trace than the CLAYERITEM object.

Parameters
aObject2D
aZMin
aZMax

Definition at line 179 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER::Add(), ConvertSRGBToLinear(), COBJECT2D::GetBBox(), COBJECT2D::GetObjectType(), m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, CBBOX2D::Max(), CBBOX2D::Min(), OBJ2D_DUMMYBLOCK, OBJ2D_ROUNDSEG, CLAYERITEM::SetColor(), CROUNDSEG::SetColor(), CXYPLANE::SetColor(), and COBJECT::SetMaterial().

Referenced by reload().

184 {
185  switch( aObject2D->GetObjectType() )
186  {
187  case OBJ2D_DUMMYBLOCK:
188  {
190 #if 1
191  CXYPLANE *objPtr;
192  objPtr = new CXYPLANE( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
193  aObject2D->GetBBox().Min().y,
194  aZMin ),
195  SFVEC3F( aObject2D->GetBBox().Max().x,
196  aObject2D->GetBBox().Max().y,
197  aZMin ) ) );
198  objPtr->SetMaterial( aMaterial );
199  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
200  aDstContainer.Add( objPtr );
201 
202  objPtr = new CXYPLANE( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
203  aObject2D->GetBBox().Min().y,
204  aZMax ),
205  SFVEC3F( aObject2D->GetBBox().Max().x,
206  aObject2D->GetBBox().Max().y,
207  aZMax ) ) );
208  objPtr->SetMaterial( aMaterial );
209  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
210  aDstContainer.Add( objPtr );
211 #else
212  objPtr = new CDUMMYBLOCK( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
213  aObject2D->GetBBox().Min().y,
214  aZMin ),
215  SFVEC3F( aObject2D->GetBBox().Max().x,
216  aObject2D->GetBBox().Max().y,
217  aZMax ) ) );
218  objPtr->SetMaterial( aMaterial );
219  aDstContainer.Add( objPtr );
220 #endif
221  }
222  break;
223 
224  case OBJ2D_ROUNDSEG:
225  {
227 
228  const CROUNDSEGMENT2D *aRoundSeg2D = static_cast<const CROUNDSEGMENT2D *>( aObject2D );
229  CROUNDSEG *objPtr = new CROUNDSEG( *aRoundSeg2D, aZMin, aZMax );
230  objPtr->SetMaterial( aMaterial );
231  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
232  aDstContainer.Add( objPtr );
233  }
234  break;
235 
236 
237  default:
238  {
239  CLAYERITEM *objPtr = new CLAYERITEM( aObject2D, aZMin, aZMax );
240  objPtr->SetMaterial( aMaterial );
241  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
242  aDstContainer.Add( objPtr );
243  }
244  break;
245  }
246 }
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
A dummy block is used to fill the polygons.
Definition: cdummyblock.h:39
void SetColor(SFVEC3F aObjColor)
Definition: croundseg.h:48
A plane that is parallel to XY plane.
Definition: cplane.h:38
unsigned int m_stats_converted_dummy_to_plane
void SetColor(SFVEC3F aObjColor)
Definition: cplane.h:52
OBJECT2D_TYPE GetObjectType() const
Definition: cobject2d.h:125
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
const SFVEC2F & Min() const
Function Min return the minimun vertex pointer.
Definition: cbbox2d.h:176
Class CBBOX manages a bounding box defined by two SFVEC3F min max points.
Definition: cbbox.h:40
const SFVEC2F & Max() const
Function Max return the maximum vertex pointer.
Definition: cbbox2d.h:183
int C3D_RENDER_RAYTRACING::GetWaitForEditingTimeOut ( )
overridevirtual

GetWaitForEditingTimeOut - Give the interface the time (in ms) that it should wait for editing or movements before (this works for display preview mode)

Returns
a value in miliseconds

Implements C3D_RENDER_BASE.

Definition at line 95 of file c3d_render_raytracing.cpp.

96 {
97  return 1000; // ms
98 }
void C3D_RENDER_RAYTRACING::initialize_block_positions ( )
private

Definition at line 2066 of file c3d_render_raytracing.cpp.

References DecodeMorton2X(), DecodeMorton2Y(), m_blockPositions, m_blockPositionsFast, m_fastPreviewModeSize, m_postshader_ssao, m_realBufferSize, m_shaderBuffer, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, opengl_init_pbo(), RAYPACKET_DIM, RAYPACKET_INVMASK, and CPOSTSHADER::UpdateSize().

Referenced by Redraw().

2067 {
2068 
2070 
2071  // Calc block positions for fast preview mode
2072  // /////////////////////////////////////////////////////////////////////
2073  m_blockPositionsFast.clear();
2074 
2075  unsigned int i = 0;
2076 
2077  while(1)
2078  {
2079  const unsigned int mX = DecodeMorton2X(i);
2080  const unsigned int mY = DecodeMorton2Y(i);
2081 
2082  i++;
2083 
2084  const SFVEC2UI blockPos( mX * 4 * RAYPACKET_DIM - mX * 4,
2085  mY * 4 * RAYPACKET_DIM - mY * 4);
2086 
2087  if( ( blockPos.x >= ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) &&
2088  ( blockPos.y >= ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) )
2089  break;
2090 
2091  if( ( blockPos.x < ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4) ) ) &&
2092  ( blockPos.y < ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4) ) ) )
2093  {
2094  m_blockPositionsFast.push_back( blockPos );
2095 
2096  if( blockPos.x > m_realBufferSize.x )
2097  m_realBufferSize.x = blockPos.x;
2098 
2099  if( blockPos.y > m_realBufferSize.y )
2100  m_realBufferSize.y = blockPos.y;
2101  }
2102  }
2103 
2105 
2108 
2109  m_xoffset = (m_windowSize.x - m_realBufferSize.x) / 2;
2110  m_yoffset = (m_windowSize.y - m_realBufferSize.y) / 2;
2111 
2113 
2114 
2115  // Calc block positions
2116  // /////////////////////////////////////////////////////////////////////
2117  m_blockPositions.clear();
2120 
2121  i = 0;
2122 
2123  while(1)
2124  {
2125  SFVEC2UI blockPos( DecodeMorton2X(i) * RAYPACKET_DIM,
2126  DecodeMorton2Y(i) * RAYPACKET_DIM );
2127  i++;
2128 
2129  if( (blockPos.x >= m_realBufferSize.x) && (blockPos.y >= m_realBufferSize.y) )
2130  break;
2131 
2132  if( (blockPos.x < m_realBufferSize.x) && (blockPos.y < m_realBufferSize.y) )
2133  m_blockPositions.push_back( blockPos );
2134  }
2135 
2136  // Create m_shader buffer
2137  delete[] m_shaderBuffer;
2139 
2140  opengl_init_pbo();
2141 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
CPOSTSHADER_SSAO m_postshader_ssao
uint32_t DecodeMorton2X(uint32_t code)
Definition: mortoncodes.cpp:98
#define RAYPACKET_INVMASK
Definition: raypacket.h:39
uint32_t DecodeMorton2Y(uint32_t code)
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
wxSize m_windowSize
The window size that this camera is working.
std::vector< SFVEC2UI > m_blockPositionsFast
this encodes the Morton code positions (on fast preview mode)
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
void UpdateSize(const SFVEC2UI &aSize)
Definition: cpostshader.cpp:72
void C3D_RENDER_RAYTRACING::initializeNewWindowSize ( )
private

Definition at line 2023 of file c3d_render_raytracing.cpp.

References opengl_init_pbo().

Referenced by SetCurWindowSize().

2024 {
2025  opengl_init_pbo();
2026 }
bool C3D_RENDER_RAYTRACING::initializeOpenGL ( )
private

Definition at line 2058 of file c3d_render_raytracing.cpp.

References C3D_RENDER_BASE::m_is_opengl_initialized.

Referenced by Redraw().

2059 {
2060  m_is_opengl_initialized = true;
2061 
2062  return true;
2063 }
bool m_is_opengl_initialized
flag if the opengl specific for this render was already initialized
void C3D_RENDER_RAYTRACING::insert3DPadHole ( const D_PAD aPad)
private

Definition at line 1012 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), B_Cu, CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), CSGITEM_EMPTY, CSGITEM_FULL, F_Cu, FL_USE_REALISTIC_MODE, COBJECT2D::GetBBox(), CINFO3D_VISU::GetCopperThickness3DU(), CINFO3D_VISU::GetCopperThicknessBIU(), D_PAD::GetDrillSize(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetItemColor(), CINFO3D_VISU::GetLayerBottomZpos3DU(), CGENERICCONTAINER2D::GetList(), CBVHCONTAINER2D::GetListObjectsIntersects(), D_PAD::GetOrientation(), D_PAD::GetPosition(), CINFO3D_VISU::GetThroughHole_Inner(), COBJECT2D::Intersects(), LAYER_PADS, m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_materials, m_object_container, C3D_RENDER_BASE::m_settings, RotatePoint(), CLAYERITEM::SetColor(), COBJECT::SetMaterial(), wxPoint::x, and wxPoint::y.

Referenced by add_3D_vias_and_pads_to_container().

1013 {
1014  const COBJECT2D *object2d_A = NULL;
1015 
1016  SFVEC3F objColor;
1017 
1019  objColor = (SFVEC3F)m_settings.m_CopperColor;
1020  else
1021  objColor = m_settings.GetItemColor( LAYER_PADS );
1022 
1023  const wxSize drillsize = aPad->GetDrillSize();
1024  const bool hasHole = drillsize.x && drillsize.y;
1025 
1026  if( !hasHole )
1027  return;
1028 
1029  const float topZ = m_settings.GetLayerBottomZpos3DU( F_Cu ) +
1031 
1032  const float botZ = m_settings.GetLayerBottomZpos3DU( B_Cu ) -
1034 
1035  if( drillsize.x == drillsize.y ) // usual round hole
1036  {
1037  SFVEC2F center = SFVEC2F( aPad->GetPosition().x * m_settings.BiuTo3Dunits(),
1038  -aPad->GetPosition().y * m_settings.BiuTo3Dunits() );
1039 
1040  CRING2D *ring = new CRING2D( center,
1041  ( drillsize.x / 2 ) * m_settings.BiuTo3Dunits(),
1042  ( ( drillsize.x / 2 ) +
1045  *aPad );
1046 
1048 
1049  object2d_A = ring;
1050  }
1051  else // Oblong hole
1052  {
1053  wxPoint ends_offset;
1054  int width;
1055 
1056  if( drillsize.x > drillsize.y ) // Horizontal oval
1057  {
1058  ends_offset.x = ( drillsize.x - drillsize.y ) / 2;
1059  width = drillsize.y;
1060  }
1061  else // Vertical oval
1062  {
1063  ends_offset.y = ( drillsize.y - drillsize.x ) / 2;
1064  width = drillsize.x;
1065  }
1066 
1067  RotatePoint( &ends_offset, aPad->GetOrientation() );
1068 
1069  wxPoint start = aPad->GetPosition() + ends_offset;
1070  wxPoint end = aPad->GetPosition() - ends_offset;
1071 
1072  CROUNDSEGMENT2D *innerSeg = new CROUNDSEGMENT2D(
1073  SFVEC2F( start.x * m_settings.BiuTo3Dunits(),
1074  -start.y * m_settings.BiuTo3Dunits() ),
1075  SFVEC2F( end.x * m_settings.BiuTo3Dunits(),
1076  -end.y * m_settings.BiuTo3Dunits() ),
1077  width * m_settings.BiuTo3Dunits(),
1078  *aPad );
1079 
1080  CROUNDSEGMENT2D *outterSeg = new CROUNDSEGMENT2D(
1081  SFVEC2F( start.x * m_settings.BiuTo3Dunits(),
1082  -start.y * m_settings.BiuTo3Dunits() ),
1083  SFVEC2F( end.x * m_settings.BiuTo3Dunits(),
1084  -end.y * m_settings.BiuTo3Dunits() ),
1085  ( width + m_settings.GetCopperThicknessBIU() * 2 ) *
1087  *aPad );
1088 
1089  // NOTE: the round segment width is the "diameter", so we double the thickness
1090 
1091  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
1092  object2d_B->push_back( innerSeg );
1093 
1094  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( outterSeg,
1095  object2d_B,
1096  CSGITEM_FULL,
1097  *aPad );
1098 
1099  m_containerWithObjectsToDelete.Add( itemCSG2d );
1100  m_containerWithObjectsToDelete.Add( innerSeg );
1101  m_containerWithObjectsToDelete.Add( outterSeg );
1102 
1103  object2d_A = itemCSG2d;
1104  }
1105 
1106 
1107  if( object2d_A )
1108  {
1109  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
1110 
1111  // Check if there are any other THT that intersects this hole
1112  // It will use the non inflated holes
1113  if( !m_settings.GetThroughHole_Inner().GetList().empty() )
1114  {
1115 
1116  CONST_LIST_OBJECT2D intersectionList;
1118  intersectionList );
1119 
1120  if( !intersectionList.empty() )
1121  {
1122  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
1123  hole != intersectionList.end();
1124  ++hole )
1125  {
1126  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
1127 
1128  if( object2d_A->Intersects( hole2d->GetBBox() ) )
1129  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
1130  object2d_B->push_back( hole2d );
1131  }
1132  }
1133  }
1134 
1135  if( object2d_B->empty() )
1136  {
1137  delete object2d_B;
1138  object2d_B = CSGITEM_EMPTY;
1139  }
1140 
1141  if( object2d_B == CSGITEM_EMPTY )
1142  {
1143  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A, topZ, botZ );
1144 
1145  objPtr->SetMaterial( &m_materials.m_Copper );
1146  objPtr->SetColor( ConvertSRGBToLinear( objColor ) );
1147  m_object_container.Add( objPtr );
1148  }
1149  else
1150  {
1151  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
1152  object2d_B,
1153  CSGITEM_FULL,
1154  (const BOARD_ITEM &)*aPad );
1155 
1156  m_containerWithObjectsToDelete.Add( itemCSG2d );
1157 
1158  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d, topZ, botZ );
1159 
1160  objPtr->SetMaterial( &m_materials.m_Copper );
1161  objPtr->SetColor( ConvertSRGBToLinear( objColor ) );
1162 
1163  m_object_container.Add( objPtr );
1164  }
1165  }
1166 }
void GetListObjectsIntersects(const CBBOX2D &aBBox, CONST_LIST_OBJECT2D &aOutList) const override
GetListObjectsIntersects - Get a list of objects that intersects a bbox.
const LIST_OBJECT2D & GetList() const
Definition: ccontainer2d.h:62
struct C3D_RENDER_RAYTRACING::@33 m_materials
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
float GetCopperThickness3DU() const
GetCopperThickness3DU - Get the current copper layer thickness.
Definition: cinfo3d_visu.h:165
Class BOARD_ITEM is a base class for any item which can be embedded within the BOARD container class...
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
SFVEC3F GetItemColor(int aItemId) const
GetItemColor - get the technical color of a layer.
std::list< const COBJECT2D * > CONST_LIST_OBJECT2D
Definition: ccontainer2d.h:37
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
int GetCopperThicknessBIU() const
GetCopperThicknessBIU - Get the current copper layer thickness.
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:317
const wxSize & GetDrillSize() const
Definition: class_pad.h:269
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define CSGITEM_EMPTY
This class is used to make constructive solig geometry for items objects on layers.
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
float GetLayerBottomZpos3DU(PCB_LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
const wxPoint & GetPosition() const override
Definition: class_pad.h:214
multilayer pads, usually with holes
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
#define CSGITEM_FULL
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
const CBVHCONTAINER2D & GetThroughHole_Inner() const
GetThroughHole_Inner - Get the ThroughHole container.
Definition: cinfo3d_visu.h:350
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
double GetOrientation() const
Function GetOrientation returns the rotation angle of the pad in tenths of degrees, but soon degrees.
Definition: class_pad.h:369
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
virtual bool Intersects(const CBBOX2D &aBBox) const =0
Function Intersects.
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
void C3D_RENDER_RAYTRACING::insert3DViaHole ( const VIA aVia)
private

Definition at line 972 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), FL_USE_REALISTIC_MODE, CINFO3D_VISU::GetCopperThickness3DU(), CINFO3D_VISU::GetCopperThicknessBIU(), VIA::GetDrillValue(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetItemColor(), CINFO3D_VISU::GetLayerBottomZpos3DU(), TRACK::GetStart(), VIA::GetViaType(), LAYER_VIAS, VIA::LayerPair(), m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_materials, m_object_container, C3D_RENDER_BASE::m_settings, CLAYERITEM::SetColor(), COBJECT::SetMaterial(), wxPoint::x, and wxPoint::y.

Referenced by add_3D_vias_and_pads_to_container().

973 {
974  PCB_LAYER_ID top_layer, bottom_layer;
975  int radiusBUI = (aVia->GetDrillValue() / 2);
976 
977  aVia->LayerPair( &top_layer, &bottom_layer );
978 
979  float topZ = m_settings.GetLayerBottomZpos3DU( top_layer ) +
981 
982  float botZ = m_settings.GetLayerBottomZpos3DU( bottom_layer ) -
984 
985  const SFVEC2F center = SFVEC2F( aVia->GetStart().x * m_settings.BiuTo3Dunits(),
986  -aVia->GetStart().y * m_settings.BiuTo3Dunits() );
987 
988  CRING2D *ring = new CRING2D( center,
989  radiusBUI * m_settings.BiuTo3Dunits(),
990  ( radiusBUI + m_settings.GetCopperThicknessBIU() ) *
992  *aVia );
993 
995 
996 
997  CLAYERITEM *objPtr = new CLAYERITEM( ring, topZ, botZ );
998 
999  objPtr->SetMaterial( &m_materials.m_Copper );
1000 
1003  else
1005 
1006  m_object_container.Add( objPtr );
1007 }
struct C3D_RENDER_RAYTRACING::@33 m_materials
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
float GetCopperThickness3DU() const
GetCopperThickness3DU - Get the current copper layer thickness.
Definition: cinfo3d_visu.h:165
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
SFVEC3F GetItemColor(int aItemId) const
GetItemColor - get the technical color of a layer.
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
int GetCopperThicknessBIU() const
GetCopperThicknessBIU - Get the current copper layer thickness.
CINFO3D_VISU & m_settings
settings refrence in use for this render
PCB_LAYER_ID
A quick note on layer IDs:
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
VIATYPE_T GetViaType() const
Definition: class_track.h:439
float GetLayerBottomZpos3DU(PCB_LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
const wxPoint & GetStart() const
Definition: class_track.h:121
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
void LayerPair(PCB_LAYER_ID *top_layer, PCB_LAYER_ID *bottom_layer) const
Function LayerPair Return the 2 layers used by the via (the via actually uses all layers between thes...
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
int GetDrillValue() const
Function GetDrillValue "calculates" the drill value for vias (m-Drill if > 0, or default drill value ...
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
bool C3D_RENDER_BASE::IsReloadRequestPending ( ) const
inlineinherited

IsReloadRequestPending - Query if there is a pending reload request.

Returns
true if it wants to reload, false if there is no reload pending

Definition at line 79 of file c3d_render_base.h.

References C3D_RENDER_BASE::m_reloadRequested.

Referenced by EDA_3D_CANVAS::IsReloadRequestPending().

79 { return m_reloadRequested; }
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
void C3D_RENDER_RAYTRACING::load_3D_models ( )
private

Definition at line 1200 of file c3d_render_createscene.cpp.

References add_3D_models(), CINFO3D_VISU::BiuTo3Dunits(), CINFO3D_VISU::Get3DCacheManager(), CINFO3D_VISU::GetBoard(), S3D_CACHE::GetModel(), CINFO3D_VISU::GetModulesZcoord3DIU(), BOARD::m_Modules, C3D_RENDER_BASE::m_settings, MODULE::Next(), scale, CINFO3D_VISU::ShouldModuleBeDisplayed(), UNITS3D_TO_UNITSPCB, wxPoint::x, and wxPoint::y.

Referenced by reload().

1201 {
1202  // Go for all modules
1203  for( const MODULE* module = m_settings.GetBoard()->m_Modules;
1204  module;
1205  module = module->Next() )
1206  {
1207  if( (!module->Models().empty() ) &&
1208  m_settings.ShouldModuleBeDisplayed( (MODULE_ATTR_T)module->GetAttributes() ) )
1209  {
1210  double zpos = m_settings.GetModulesZcoord3DIU( module->IsFlipped() );
1211 
1212  wxPoint pos = module->GetPosition();
1213 
1214  glm::mat4 moduleMatrix = glm::mat4();
1215 
1216  moduleMatrix = glm::translate( moduleMatrix,
1217  SFVEC3F( pos.x * m_settings.BiuTo3Dunits(),
1218  -pos.y * m_settings.BiuTo3Dunits(),
1219  zpos ) );
1220 
1221  if( module->GetOrientation() )
1222  {
1223  moduleMatrix = glm::rotate( moduleMatrix,
1224  ( (float)(module->GetOrientation() / 10.0f) / 180.0f ) *
1225  glm::pi<float>(),
1226  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1227  }
1228 
1229 
1230  if( module->IsFlipped() )
1231  {
1232  moduleMatrix = glm::rotate( moduleMatrix,
1233  glm::pi<float>(),
1234  SFVEC3F( 0.0f, 1.0f, 0.0f ) );
1235 
1236  moduleMatrix = glm::rotate( moduleMatrix,
1237  glm::pi<float>(),
1238  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1239  }
1240 
1241  const double modelunit_to_3d_units_factor = m_settings.BiuTo3Dunits() *
1243 
1244  moduleMatrix = glm::scale( moduleMatrix,
1245  SFVEC3F( modelunit_to_3d_units_factor,
1246  modelunit_to_3d_units_factor,
1247  modelunit_to_3d_units_factor ) );
1248 
1249 
1250  // Get the list of model files for this model
1251  std::list<S3D_INFO>::const_iterator sM = module->Models().begin();
1252  std::list<S3D_INFO>::const_iterator eM = module->Models().end();
1253 
1254  while( sM != eM )
1255  {
1256  // get it from cache
1257  const S3DMODEL *modelPtr =
1258  m_settings.Get3DCacheManager()->GetModel( sM->m_Filename );
1259 
1260  // only add it if the return is not NULL
1261  if( modelPtr )
1262  {
1263  glm::mat4 modelMatrix = moduleMatrix;
1264 
1265  modelMatrix = glm::translate( modelMatrix,
1266  SFVEC3F( sM->m_Offset.x * 25.4f,
1267  sM->m_Offset.y * 25.4f,
1268  sM->m_Offset.z * 25.4f ) );
1269 
1270  modelMatrix = glm::rotate( modelMatrix,
1271  (float)-( sM->m_Rotation.z / 180.0f ) *
1272  glm::pi<float>(),
1273  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1274 
1275  modelMatrix = glm::rotate( modelMatrix,
1276  (float)-( sM->m_Rotation.y / 180.0f ) *
1277  glm::pi<float>(),
1278  SFVEC3F( 0.0f, 1.0f, 0.0f ) );
1279 
1280  modelMatrix = glm::rotate( modelMatrix,
1281  (float)-( sM->m_Rotation.x / 180.0f ) *
1282  glm::pi<float>(),
1283  SFVEC3F( 1.0f, 0.0f, 0.0f ) );
1284 
1285  modelMatrix = glm::scale( modelMatrix,
1286  SFVEC3F( sM->m_Scale.x,
1287  sM->m_Scale.y,
1288  sM->m_Scale.z ) );
1289 
1290  add_3D_models( modelPtr, modelMatrix );
1291  }
1292 
1293  ++sM;
1294  }
1295  }
1296  }
1297 }
S3D_CACHE * Get3DCacheManager() const
Get3DCacheManager - Return the 3d cache manager pointer.
Definition: cinfo3d_visu.h:88
MODULE * Next() const
Definition: class_module.h:100
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define UNITS3D_TO_UNITSPCB
Scale convertion from 3d model units to pcb units.
S3DMODEL * GetModel(const wxString &aModelFileName)
Function GetModel attempts to load the scene data for a model and to translate it into an S3D_MODEL s...
Definition: 3d_cache.cpp:781
MODULE_ATTR_T
Enum MODULE_ATTR_T is the set of attributes allowed within a MODULE, using MODULE::SetAttributes() an...
Definition: class_module.h:74
void add_3D_models(const S3DMODEL *a3DModel, const glm::mat4 &aModelMatrix)
float GetModulesZcoord3DIU(bool aIsFlipped) const
GetModulesZcoord3DIU - Get the position of the module in 3d integer units considering if it is flippe...
const int scale
bool ShouldModuleBeDisplayed(MODULE_ATTR_T aModuleAttributs) const
ShouldModuleBeDisplayed - Test if module should be displayed in relation to attributs and the flags...
DLIST< MODULE > m_Modules
Definition: class_board.h:245
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
Store the a model based on meshes and materials.
Definition: c3dmodel.h:90
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
void C3D_RENDER_RAYTRACING::opengl_delete_pbo ( )
private

Definition at line 101 of file c3d_render_raytracing.cpp.

References m_opengl_support_vertex_buffer_object, and m_pboId.

Referenced by opengl_init_pbo(), and ~C3D_RENDER_RAYTRACING().

102 {
103  // Delete PBO if it was created
105  {
106  if( glIsBufferARB( m_pboId ) )
107  glDeleteBuffers( 1, &m_pboId );
108 
109  m_pboId = GL_NONE;
110  }
111 }
void C3D_RENDER_RAYTRACING::opengl_init_pbo ( )
private

Definition at line 2029 of file c3d_render_raytracing.cpp.

References C3D_RENDER_BASE::m_logTrace, m_opengl_support_vertex_buffer_object, m_pboDataSize, m_pboId, m_realBufferSize, and opengl_delete_pbo().

Referenced by initialize_block_positions(), and initializeNewWindowSize().

2030 {
2031  if( GLEW_ARB_pixel_buffer_object )
2032  {
2034 
2035  // Try to delete vbo if it was already initialized
2037 
2038  // Learn about Pixel buffer objects at:
2039  // http://www.songho.ca/opengl/gl_pbo.html
2040  // http://web.eecs.umich.edu/~sugih/courses/eecs487/lectures/25-PBO+Mipmapping.pdf
2041  // "create 2 pixel buffer objects, you need to delete them when program exits.
2042  // glBufferDataARB with NULL pointer reserves only memory space."
2043 
2044  // This sets the number of RGBA pixels
2046 
2047  glGenBuffersARB( 1, &m_pboId );
2048  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
2049  glBufferDataARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboDataSize, 0, GL_STREAM_DRAW_ARB );
2050  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
2051 
2052  wxLogTrace( m_logTrace,
2053  wxT( "C3D_RENDER_RAYTRACING:: GLEW_ARB_pixel_buffer_object is supported" ) );
2054  }
2055 }
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.
bool C3D_RENDER_RAYTRACING::Redraw ( bool  aIsMoving,
REPORTER aStatusTextReporter 
)
overridevirtual

Redraw - Ask to redraw the view.

Parameters
aIsMovingif the user is moving the scene, it should be render in preview mode
aStatusTextReportera pointer to the status progress reporter
Returns
it will return true if the render would like to redraw again

Implements C3D_RENDER_BASE.

Definition at line 150 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), CCAMERA::GetDir(), initialize_block_positions(), initializeOpenGL(), CINFO3D_VISU::m_BgColorBot, CINFO3D_VISU::m_BgColorTop, m_camera_light, C3D_RENDER_BASE::m_is_opengl_initialized, m_oldWindowsSize, m_pboId, m_realBufferSize, C3D_RENDER_BASE::m_reloadRequested, m_rt_render_state, C3D_RENDER_BASE::m_settings, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, OGL_DrawBackground(), CCAMERA::ParametersChanged(), reload(), render(), render_preview(), REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_MAX, and CDIRECTIONALLIGHT::SetDirection().

151 {
152  bool requestRedraw = false;
153 
154  // Initialize openGL if need
155  // /////////////////////////////////////////////////////////////////////////
157  {
158  if( !initializeOpenGL() )
159  return false;
160 
161  //aIsMoving = true;
162  requestRedraw = true;
163 
164  // It will assign the first time the windows size, so it will now
165  // revert to preview mode the first time the Redraw is called
168  }
169 
170 
171  // Reload board if it was requested
172  // /////////////////////////////////////////////////////////////////////////
173  if( m_reloadRequested )
174  {
175  if( aStatusTextReporter )
176  aStatusTextReporter->Report( _( "Loading..." ) );
177 
178  //aIsMoving = true;
179  requestRedraw = true;
180  reload( aStatusTextReporter );
181  }
182 
183 
184  // Recalculate constants if windows size was changed
185  // /////////////////////////////////////////////////////////////////////////
187  {
189  aIsMoving = true;
190  requestRedraw = true;
191 
193  }
194 
195 
196  // Clear buffers
197  // /////////////////////////////////////////////////////////////////////////
198  glClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
199  glClearDepth( 1.0f );
200  glClearStencil( 0x00 );
201  glClear( GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
202 
203  // 4-byte pixel alignment
204  glPixelStorei( GL_UNPACK_ALIGNMENT, 4 );
205 
206  glDisable( GL_STENCIL_TEST );
207  glDisable( GL_LIGHTING );
208  glDisable( GL_COLOR_MATERIAL );
209  glDisable( GL_DEPTH_TEST );
210  glDisable( GL_TEXTURE_2D );
211  glDisable( GL_BLEND );
212 
213 
214  const bool was_camera_changed = m_settings.CameraGet().ParametersChanged();
215 
216  if( requestRedraw || aIsMoving || was_camera_changed )
217  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an invalid state,
218  // so it will restart again latter
219 
220 
221  // This will only render if need, otherwise it will redraw the PBO on the screen again
222  if( aIsMoving || was_camera_changed )
223  {
224  // Set head light (camera view light) with the oposite direction of the camera
225  if( m_camera_light )
227 
230 
231  // Bind PBO
232  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
233 
234  // Get the PBO pixel pointer to write the data
235  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
236  GL_WRITE_ONLY_ARB );
237 
238  if( ptrPBO )
239  {
240  render_preview( ptrPBO );
241 
242  // release pointer to mapping buffer, this initialize the coping to PBO
243  glUnmapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB );
244  }
245 
246  glWindowPos2i( m_xoffset, m_yoffset );
247  }
248  else
249  {
250  // Bind PBO
251  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
252 
254  {
255  // Get the PBO pixel pointer to write the data
256  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
257  GL_WRITE_ONLY_ARB );
258 
259  if( ptrPBO )
260  {
261  render( ptrPBO, aStatusTextReporter );
262 
264  requestRedraw = true;
265 
266  // release pointer to mapping buffer, this initialize the coping to PBO
267  glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
268  }
269  }
270 
272  {
273  glClear( GL_COLOR_BUFFER_BIT );
274  // Options if we want draw background instead
275  //OGL_DrawBackground( SFVEC3F(m_settings.m_BgColorTop),
276  // SFVEC3F(m_settings.m_BgColorBot) );
277  }
278 
279  glWindowPos2i( m_xoffset, m_yoffset );
280  }
281 
282  // This way it will blend the progress rendering with the last buffer. eg:
283  // if it was called after a openGL.
284  glEnable( GL_BLEND );
285  glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
286  glEnable( GL_ALPHA_TEST );
287 
288  glDrawPixels( m_realBufferSize.x,
290  GL_RGBA,
291  GL_UNSIGNED_BYTE,
292  0 );
293 
294  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
295 
296  return requestRedraw;
297 }
wxSize m_oldWindowsSize
used to see if the windows size changed
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
const SFVEC3F & GetDir() const
Definition: ccamera.h:109
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
void OGL_DrawBackground(const SFVEC3F &aTopColor, const SFVEC3F &aBotColor)
OGL_DrawBackground.
Definition: ogl_utils.cpp:176
bool m_is_opengl_initialized
flag if the opengl specific for this render was already initialized
RT_RENDER_STATE m_rt_render_state
State used on quality render.
wxSize m_windowSize
The window size that this camera is working.
CDIRECTIONALLIGHT * m_camera_light
void SetDirection(const SFVEC3F &aDir)
SetDirection - Set directional light orientation.
Definition: clight.h:129
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void render_preview(GLubyte *ptrPBO)
void render(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
bool ParametersChanged()
Function ParametersChanged.
Definition: ccamera.cpp:567
void reload(REPORTER *aStatusTextReporter)
void C3D_RENDER_RAYTRACING::reload ( REPORTER aStatusTextReporter)
private

Definition at line 249 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), CLIGHTCONTAINER::Add(), add_3D_vias_and_pads_to_container(), B_Adhes, B_CrtYd, B_Cu, B_Fab, B_Mask, B_Paste, B_SilkS, CINFO3D_VISU::BiuTo3Dunits(), CINFO3D_VISU::CameraGet(), CGENERICCONTAINER2D::Clear(), CGENERICCONTAINER::Clear(), CLIGHTCONTAINER::Clear(), Cmts_User, Convert_path_polygon_to_polygon_blocks_and_dummy_blocks(), ConvertSRGBToLinear(), create_3d_object_from(), CSGITEM_EMPTY, CSGITEM_FULL, Dwgs_User, Eco1_User, Eco2_User, Edge_Cuts, F_Adhes, F_CrtYd, F_Cu, F_Fab, F_Mask, F_Paste, F_SilkS, FL_RENDER_RAYTRACING_BACKFLOOR, FL_RENDER_SHOW_HOLES_IN_ZONES, FL_SHOW_BOARD_BODY, FL_SOLDERMASK, FL_USE_REALISTIC_MODE, Format(), SHAPE_POLY_SET::Fracture(), CGENERICCONTAINER::GetBBox(), COBJECT2D::GetBBox(), CINFO3D_VISU::GetBBox3DU(), CINFO3D_VISU::GetBoard(), CINFO3D_VISU::GetBoardCenter3DU(), COBJECT2D::GetBoardItem(), CINFO3D_VISU::GetBoardPoly(), CBBOX::GetCenter(), COBJECT2D::GetCentroid(), CBBOX2D::GetExtent(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetLayerBottomZpos3DU(), CINFO3D_VISU::GetLayerColor(), CINFO3D_VISU::GetLayerTopZpos3DU(), CGENERICCONTAINER2D::GetList(), CGENERICCONTAINER::GetList(), CBVHCONTAINER2D::GetListObjectsIntersects(), CINFO3D_VISU::GetMapLayers(), CINFO3D_VISU::GetMapLayersHoles(), COBJECT2D::GetObjectType(), GetRunningMicroSecs(), CINFO3D_VISU::GetStats_Med_Hole_Diameter3DU(), CINFO3D_VISU::GetStats_Med_Via_Hole_Diameter3DU(), CINFO3D_VISU::GetStats_Nr_Holes(), CINFO3D_VISU::GetStats_Nr_Vias(), CINFO3D_VISU::GetThroughHole_Outer(), CINFO3D_VISU::InitSettings(), COBJECT3D_STATS::Instance(), COBJECT2D_STATS::Instance(), COBJECT2D::Intersects(), CBBOX::IsInitialized(), load_3D_models(), m_accelerator, CINFO3D_VISU::m_BgColorTop, CINFO3D_VISU::m_BoardBodyColor, m_camera_light, m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_lights, m_materials, m_model_materials, m_object_container, m_outlineBoard2dObjects, C3D_RENDER_BASE::m_reloadRequested, C3D_RENDER_BASE::m_settings, CINFO3D_VISU::m_SilkScreenColor, CINFO3D_VISU::m_SolderMaskColor, CINFO3D_VISU::m_SolderPasteColor, m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, Margin, min, CBBOX::Min(), NextFloatDown(), NextFloatUp(), OBJ2D_FILLED_CIRCLE, SHAPE_POLY_SET::PM_FAST, COBJECT3D_STATS::PrintStats(), COBJECT2D_STATS::PrintStats(), RANGE_SCALE_3D, REPORTER::Report(), COBJECT3D_STATS::ResetStats(), COBJECT2D_STATS::ResetStats(), CBBOX::Scale(), CCAMERA::SetBoardLookAtPos(), CLIGHT::SetCastShadows(), CLAYERITEM::SetColor(), CVCYLINDER::SetColor(), CTRIANGLE::SetColor(), COBJECT::SetMaterial(), setupMaterials(), and SphericalToCartesian().

Referenced by Redraw().

250 {
251  m_reloadRequested = false;
252 
253  m_model_materials.clear();
254 
257 
258 #ifdef PRINT_STATISTICS_3D_VIEWER
259  printf("InitSettings...\n");
260 #endif
261 
262  unsigned stats_startReloadTime = GetRunningMicroSecs();
263 
264  m_settings.InitSettings( aStatusTextReporter );
265 
266 #ifdef PRINT_STATISTICS_3D_VIEWER
267  unsigned stats_endReloadTime = GetRunningMicroSecs();
268  unsigned stats_startConvertTime = GetRunningMicroSecs();
269  #endif
270 
271  SFVEC3F camera_pos = m_settings.GetBoardCenter3DU();
272  m_settings.CameraGet().SetBoardLookAtPos( camera_pos );
273 
276 
277 
278  // Create and add the outline board
279  // /////////////////////////////////////////////////////////////////////////
280 
281 #ifdef PRINT_STATISTICS_3D_VIEWER
282  printf("Create outline board...\n");
283 #endif
284 
286 
288 
289  if( ((const SHAPE_POLY_SET &)m_settings.GetBoardPoly()).OutlineCount() == 1 )
290  {
291  float divFactor = 0.0f;
292 
294  divFactor = m_settings.GetStats_Med_Via_Hole_Diameter3DU() * 18.0f;
295  else
297  divFactor = m_settings.GetStats_Med_Hole_Diameter3DU() * 8.0f;
298 
299  SHAPE_POLY_SET boardPolyCopy = m_settings.GetBoardPoly();
300  boardPolyCopy.Fracture( SHAPE_POLY_SET::PM_FAST );
301 
303  boardPolyCopy,
306  divFactor,
307  (const BOARD_ITEM &)*m_settings.GetBoard() );
308 
310  {
311  const LIST_OBJECT2D &listObjects = m_outlineBoard2dObjects->GetList();
312 
313  for( LIST_OBJECT2D::const_iterator object2d_iterator = listObjects.begin();
314  object2d_iterator != listObjects.end();
315  ++object2d_iterator )
316  {
317  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*object2d_iterator);
318 
319  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
320 
321  // Check if there are any THT that intersects this outline object part
322  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
323  {
324 
325  CONST_LIST_OBJECT2D intersectionList;
327  object2d_A->GetBBox(),
328  intersectionList );
329 
330  if( !intersectionList.empty() )
331  {
332  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
333  hole != intersectionList.end();
334  ++hole )
335  {
336  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
337 
338  if( object2d_A->Intersects( hole2d->GetBBox() ) )
339  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
340  object2d_B->push_back( hole2d );
341  }
342  }
343  }
344 
345  if( object2d_B->empty() )
346  {
347  delete object2d_B;
348  object2d_B = CSGITEM_EMPTY;
349  }
350 
351  if( object2d_B == CSGITEM_EMPTY )
352  {
353  #if 0
357  &m_materials.m_EpoxyBoard,
358  g_epoxyColor );
359  #else
360  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
363 
364  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
365  objPtr->SetColor( ConvertSRGBToLinear( (SFVEC3F)m_settings.m_BoardBodyColor ) );
366  m_object_container.Add( objPtr );
367  #endif
368  }
369  else
370  {
371  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D(
372  object2d_A,
373  object2d_B,
374  CSGITEM_FULL,
375  (const BOARD_ITEM &)*m_settings.GetBoard() );
376 
377  m_containerWithObjectsToDelete.Add( itemCSG2d );
378 
379  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
382 
383  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
385  m_object_container.Add( objPtr );
386  }
387  }
388 
389  // Add cylinders of the board body to container
390  // Note: This is actually a workarround for the holes in the board.
391  // The issue is because if a hole is in a border of a divided polygon ( ex
392  // a polygon or dummyblock) it will cut also the render of the hole.
393  // So this will add a full hole.
394  // In fact, that is not need if the hole have copper.
395  // /////////////////////////////////////////////////////////////////////////
396  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
397  {
399 
400  for( LIST_OBJECT2D::const_iterator hole = holeList.begin();
401  hole != holeList.end();
402  ++hole )
403  {
404  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
405 
406  switch( hole2d->GetObjectType() )
407  {
408  case OBJ2D_FILLED_CIRCLE:
409  {
410  const float radius = hole2d->GetBBox().GetExtent().x * 0.5f * 0.999f;
411 
412  CVCYLINDER *objPtr = new CVCYLINDER(
413  hole2d->GetCentroid(),
416  radius );
417 
418  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
420 
421  m_object_container.Add( objPtr );
422  }
423  break;
424 
425  default:
426  break;
427  }
428  }
429  }
430  }
431  }
432 
433 
434  // Add layers maps (except B_Mask and F_Mask)
435  // /////////////////////////////////////////////////////////////////////////
436 
437 #ifdef PRINT_STATISTICS_3D_VIEWER
438  printf("Add layers maps...\n");
439 #endif
440 
441  for( MAP_CONTAINER_2D::const_iterator ii = m_settings.GetMapLayers().begin();
442  ii != m_settings.GetMapLayers().end();
443  ++ii )
444  {
445  PCB_LAYER_ID layer_id = static_cast<PCB_LAYER_ID>(ii->first);
446 
447  // Mask kayers are not processed here because they are a special case
448  if( (layer_id == B_Mask) || (layer_id == F_Mask) )
449  continue;
450 
451  CMATERIAL *materialLayer = &m_materials.m_SilkS;
452  SFVEC3F layerColor = SFVEC3F( 0.0f, 0.0f, 0.0f );
453 
454  switch( layer_id )
455  {
456  case B_Adhes:
457  case F_Adhes:
458  break;
459 
460  case B_Paste:
461  case F_Paste:
462  materialLayer = &m_materials.m_Paste;
463 
465  layerColor = m_settings.m_SolderPasteColor;
466  else
467  layerColor = m_settings.GetLayerColor( layer_id );
468  break;
469 
470  case B_SilkS:
471  case F_SilkS:
472  materialLayer = &m_materials.m_SilkS;
473 
475  layerColor = m_settings.m_SilkScreenColor;
476  else
477  layerColor = m_settings.GetLayerColor( layer_id );
478  break;
479 
480  case Dwgs_User:
481  case Cmts_User:
482  case Eco1_User:
483  case Eco2_User:
484  case Edge_Cuts:
485  case Margin:
486  break;
487 
488  case B_CrtYd:
489  case F_CrtYd:
490  break;
491 
492  case B_Fab:
493  case F_Fab:
494  break;
495 
496  default:
497  materialLayer = &m_materials.m_Copper;
498 
500  layerColor = m_settings.m_CopperColor;
501  else
502  layerColor = m_settings.GetLayerColor( layer_id );
503  break;
504  }
505 
506  const CBVHCONTAINER2D *container2d = static_cast<const CBVHCONTAINER2D *>(ii->second);
507  const LIST_OBJECT2D &listObject2d = container2d->GetList();
508 
509  for( LIST_OBJECT2D::const_iterator itemOnLayer = listObject2d.begin();
510  itemOnLayer != listObject2d.end();
511  ++itemOnLayer )
512  {
513  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*itemOnLayer);
514 
515  // not yet used / implemented (can be used in future to clip the objects in the board borders
516  COBJECT2D *object2d_C = CSGITEM_FULL;
517 
518  std::vector<const COBJECT2D *> *object2d_B = CSGITEM_EMPTY;
519 
521  {
522  object2d_B = new std::vector<const COBJECT2D *>();
523 
524  // Check if there are any layerhole that intersects this object
525  // Eg: a segment is cutted by a via hole or THT hole.
526  // /////////////////////////////////////////////////////////////
527  const MAP_CONTAINER_2D &layerHolesMap = m_settings.GetMapLayersHoles();
528 
529  if( layerHolesMap.find(layer_id) != layerHolesMap.end() )
530  {
531  MAP_CONTAINER_2D::const_iterator ii_hole = layerHolesMap.find(layer_id);
532 
533  const CBVHCONTAINER2D *containerLayerHoles2d =
534  static_cast<const CBVHCONTAINER2D *>(ii_hole->second);
535 
536 
537  CONST_LIST_OBJECT2D intersectionList;
538  containerLayerHoles2d->GetListObjectsIntersects( object2d_A->GetBBox(),
539  intersectionList );
540 
541  if( !intersectionList.empty() )
542  {
543  for( CONST_LIST_OBJECT2D::const_iterator holeOnLayer =
544  intersectionList.begin();
545  holeOnLayer != intersectionList.end();
546  ++holeOnLayer )
547  {
548  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*holeOnLayer);
549 
550  //if( object2d_A->Intersects( hole2d->GetBBox() ) )
551  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
552  object2d_B->push_back( hole2d );
553  }
554  }
555  }
556 
557  // Check if there are any THT that intersects this object
558  // /////////////////////////////////////////////////////////////
559  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
560  {
561  CONST_LIST_OBJECT2D intersectionList;
562 
564  object2d_A->GetBBox(),
565  intersectionList );
566 
567  if( !intersectionList.empty() )
568  {
569  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
570  hole != intersectionList.end();
571  ++hole )
572  {
573  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
574 
575  //if( object2d_A->Intersects( hole2d->GetBBox() ) )
576  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
577  object2d_B->push_back( hole2d );
578  }
579  }
580  }
581 
582  if( object2d_B->empty() )
583  {
584  delete object2d_B;
585  object2d_B = CSGITEM_EMPTY;
586  }
587  }
588 
589  if( (object2d_B == CSGITEM_EMPTY) &&
590  (object2d_C == CSGITEM_FULL) )
591  {
592 #if 0
594  object2d_A,
595  m_settings.GetLayerBottomZpos3DU( layer_id ),
596  m_settings.GetLayerTopZpos3DU( layer_id ),
597  materialLayer,
598  layerColor );
599 #else
600  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
601  m_settings.GetLayerBottomZpos3DU( layer_id ),
602  m_settings.GetLayerTopZpos3DU( layer_id ) );
603  objPtr->SetMaterial( materialLayer );
604  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
605  m_object_container.Add( objPtr );
606 #endif
607  }
608  else
609  {
610 #if 1
611  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
612  object2d_B,
613  object2d_C,
614  object2d_A->GetBoardItem() );
615  m_containerWithObjectsToDelete.Add( itemCSG2d );
616 
617  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
618  m_settings.GetLayerBottomZpos3DU( layer_id ),
619  m_settings.GetLayerTopZpos3DU( layer_id ) );
620 
621  objPtr->SetMaterial( materialLayer );
622  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
623 
624  m_object_container.Add( objPtr );
625 #endif
626  }
627  }
628  }// for each layer on map
629 
630 
631 
632  // Add Mask layer
633  // Solder mask layers are "negative" layers so the elements that we have
634  // (in the container) should remove the board outline.
635  // We will check for all objects in the outline if it intersects any object
636  // in the layer container and also any hole.
637  // /////////////////////////////////////////////////////////////////////////
639  (m_outlineBoard2dObjects->GetList().size() >= 1) )
640  {
641  CMATERIAL *materialLayer = &m_materials.m_SolderMask;
642 
643  for( MAP_CONTAINER_2D::const_iterator ii = m_settings.GetMapLayers().begin();
644  ii != m_settings.GetMapLayers().end();
645  ++ii )
646  {
647  PCB_LAYER_ID layer_id = static_cast<PCB_LAYER_ID>(ii->first);
648 
649  const CBVHCONTAINER2D *containerLayer2d =
650  static_cast<const CBVHCONTAINER2D *>(ii->second);
651 
652  // Only get the Solder mask layers
653  if( !((layer_id == B_Mask) || (layer_id == F_Mask)) )
654  continue;
655 
656  SFVEC3F layerColor;
658  layerColor = m_settings.m_SolderMaskColor;
659  else
660  layerColor = m_settings.GetLayerColor( layer_id );
661 
662  const float zLayerMin = m_settings.GetLayerBottomZpos3DU( layer_id );
663  const float zLayerMax = m_settings.GetLayerTopZpos3DU( layer_id );
664 
665  // Get the outline board objects
666  const LIST_OBJECT2D &listObjects = m_outlineBoard2dObjects->GetList();
667 
668  for( LIST_OBJECT2D::const_iterator object2d_iterator = listObjects.begin();
669  object2d_iterator != listObjects.end();
670  ++object2d_iterator )
671  {
672  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*object2d_iterator);
673 
674  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
675 
676  // Check if there are any THT that intersects this outline object part
677  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
678  {
679 
680  CONST_LIST_OBJECT2D intersectionList;
681 
683  object2d_A->GetBBox(),
684  intersectionList );
685 
686  if( !intersectionList.empty() )
687  {
688  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
689  hole != intersectionList.end();
690  ++hole )
691  {
692  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
693 
694  if( object2d_A->Intersects( hole2d->GetBBox() ) )
695  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
696  object2d_B->push_back( hole2d );
697  }
698  }
699  }
700 
701  // Check if there are any objects in the layer to subtract with the
702  // corrent object
703  if( !containerLayer2d->GetList().empty() )
704  {
705  CONST_LIST_OBJECT2D intersectionList;
706 
707  containerLayer2d->GetListObjectsIntersects( object2d_A->GetBBox(),
708  intersectionList );
709 
710  if( !intersectionList.empty() )
711  {
712  for( CONST_LIST_OBJECT2D::const_iterator obj = intersectionList.begin();
713  obj != intersectionList.end();
714  ++obj )
715  {
716  const COBJECT2D *obj2d = static_cast<const COBJECT2D *>(*obj);
717 
718  //if( object2d_A->Intersects( obj2d->GetBBox() ) )
719  //if( object2d_A->GetBBox().Intersects( obj2d->GetBBox() ) )
720  object2d_B->push_back( obj2d );
721  }
722  }
723  }
724 
725  if( object2d_B->empty() )
726  {
727  delete object2d_B;
728  object2d_B = CSGITEM_EMPTY;
729  }
730 
731  if( object2d_B == CSGITEM_EMPTY )
732  {
733  #if 0
735  object2d_A,
736  zLayerMin,
737  zLayerMax,
738  materialLayer,
739  layerColor );
740  #else
741  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
742  zLayerMin,
743  zLayerMax );
744 
745  objPtr->SetMaterial( materialLayer );
746  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
747 
748  m_object_container.Add( objPtr );
749  #endif
750  }
751  else
752  {
753  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
754  object2d_B,
755  CSGITEM_FULL,
756  object2d_A->GetBoardItem() );
757 
758  m_containerWithObjectsToDelete.Add( itemCSG2d );
759 
760  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
761  zLayerMin,
762  zLayerMax );
763  objPtr->SetMaterial( materialLayer );
764  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
765 
766  m_object_container.Add( objPtr );
767  }
768  }
769  }
770  }
771 
773 
774 #ifdef PRINT_STATISTICS_3D_VIEWER
775  unsigned stats_endConvertTime = GetRunningMicroSecs();
776  unsigned stats_startLoad3DmodelsTime = stats_endConvertTime;
777 #endif
778 
779 
780  load_3D_models();
781 
782 
783 #ifdef PRINT_STATISTICS_3D_VIEWER
784  unsigned stats_endLoad3DmodelsTime = GetRunningMicroSecs();
785 #endif
786 
787  // Add floor
788  // /////////////////////////////////////////////////////////////////////////
790  {
791  CBBOX boardBBox = m_settings.GetBBox3DU();
792 
793  if( boardBBox.IsInitialized() )
794  {
795  boardBBox.Scale( 3.0f );
796 
797  if( m_object_container.GetList().size() > 0 )
798  {
799  CBBOX containerBBox = m_object_container.GetBBox();
800 
801  containerBBox.Scale( 1.3f );
802 
803  const SFVEC3F centerBBox = containerBBox.GetCenter();
804 
805  const float minZ = glm::min( containerBBox.Min().z,
806  boardBBox.Min().z );
807 
808  const SFVEC3F v1 = SFVEC3F( -RANGE_SCALE_3D * 4.0f,
809  -RANGE_SCALE_3D * 4.0f,
810  minZ ) +
811  SFVEC3F( centerBBox.x,
812  centerBBox.y,
813  0.0f );
814 
815  const SFVEC3F v3 = SFVEC3F( +RANGE_SCALE_3D * 4.0f,
816  +RANGE_SCALE_3D * 4.0f,
817  minZ ) +
818  SFVEC3F( centerBBox.x,
819  centerBBox.y,
820  0.0f );
821 
822  const SFVEC3F v2 = SFVEC3F( v1.x, v3.y, v1.z );
823  const SFVEC3F v4 = SFVEC3F( v3.x, v1.y, v1.z );
824 
825  CTRIANGLE *newTriangle1 = new CTRIANGLE( v1, v2, v3 );
826  CTRIANGLE *newTriangle2 = new CTRIANGLE( v3, v4, v1 );
827 
828  m_object_container.Add( newTriangle1 );
829  m_object_container.Add( newTriangle2 );
830 
831  newTriangle1->SetMaterial( (const CMATERIAL *)&m_materials.m_Floor );
832  newTriangle2->SetMaterial( (const CMATERIAL *)&m_materials.m_Floor );
833 
836  }
837  }
838  }
839 
840 
841  // Init initial lights
842  // /////////////////////////////////////////////////////////////////////////
843  m_lights.Clear();
844 
845  // This will work as the front camera light.
846  const float light_camera_intensity = 0.20;
847  const float light_top_bottom = 0.25;
848  const float light_directional_intensity = ( 1.0f - ( light_camera_intensity +
849  light_top_bottom * 0.5f ) ) / 4.0f;
850 
851  m_camera_light = new CDIRECTIONALLIGHT( SFVEC3F( 0.0f, 0.0f, 0.0f ),
852  SFVEC3F( light_camera_intensity ) );
853  m_camera_light->SetCastShadows( false );
855 
856  // Option 1 - using Point Lights
857 
858  const SFVEC3F &boarCenter = m_settings.GetBBox3DU().GetCenter();
859 
860  m_lights.Add( new CPOINTLIGHT( SFVEC3F( boarCenter.x, boarCenter.y, +RANGE_SCALE_3D * 2.0f ),
861  SFVEC3F( light_top_bottom ) ) );
862 
863  m_lights.Add( new CPOINTLIGHT( SFVEC3F( boarCenter.x, boarCenter.y, -RANGE_SCALE_3D * 2.0f ),
864  SFVEC3F( light_top_bottom ) ) );
865 
866 
867  // http://www.flashandmath.com/mathlets/multicalc/coords/shilmay23fin.html
868 
869  // Option 2 - Top/Bottom direction lights
870  /*
871  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 0.03f,
872  glm::pi<float>() * 0.25f ),
873  SFVEC3F( light_top_bottom ) ) );
874 
875  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 0.97f,
876  glm::pi<float>() * 1.25f ),
877  SFVEC3F( light_top_bottom ) ) );
878  */
879 
880  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
881  glm::pi<float>() * 1 / 4.0f ),
882  SFVEC3F( light_directional_intensity ) ) );
883  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
884  glm::pi<float>() * 3 / 4.0f ),
885  SFVEC3F( light_directional_intensity ) ) );
886  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
887  glm::pi<float>() * 5 / 4.0f ),
888  SFVEC3F( light_directional_intensity ) ) );
889  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
890  glm::pi<float>() * 7 / 4.0f ),
891  SFVEC3F( light_directional_intensity ) ) );
892 
893 
894  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
895  glm::pi<float>() * 1 / 4.0f ),
896  SFVEC3F( light_directional_intensity ) ) );
897  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
898  glm::pi<float>() * 3 / 4.0f ),
899  SFVEC3F( light_directional_intensity ) ) );
900  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
901  glm::pi<float>() * 5 / 4.0f ),
902  SFVEC3F( light_directional_intensity ) ) );
903  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
904  glm::pi<float>() * 7 / 4.0f ),
905  SFVEC3F( light_directional_intensity ) ) );
906 
907 
908  // Create an accelerator
909  // /////////////////////////////////////////////////////////////////////////
910 
911 #ifdef PRINT_STATISTICS_3D_VIEWER
912  unsigned stats_startAcceleratorTime = GetRunningMicroSecs();
913 #endif
914 
915  if( m_accelerator )
916  {
917  delete m_accelerator;
918  }
919  m_accelerator = 0;
920 
921  //m_accelerator = new CGRID( m_object_container );
923 
924 #ifdef PRINT_STATISTICS_3D_VIEWER
925  unsigned stats_endAcceleratorTime = GetRunningMicroSecs();
926 #endif
927 
928  setupMaterials();
929 
930 #ifdef PRINT_STATISTICS_3D_VIEWER
931  printf( "C3D_RENDER_RAYTRACING::reload times:\n" );
932  printf( " Reload board: %.3f ms\n", (float)( stats_endReloadTime -
933  stats_startReloadTime ) /
934 
935  1000.0f );
936  printf( " Convert to 3D objects: %.3f ms\n", (float)( stats_endConvertTime -
937  stats_startConvertTime ) /
938  1000.0f );
939  printf( " Accelerator construction: %.3f ms\n", (float)( stats_endAcceleratorTime -
940  stats_startAcceleratorTime ) /
941  1000.0f );
942  printf( " Load and add 3D models: %.3f ms\n", (float)( stats_endLoad3DmodelsTime -
943  stats_startLoad3DmodelsTime ) /
944  1000.0f );
945  printf( "Optimizations\n" );
946 
947  printf( " m_stats_converted_dummy_to_plane: %u\n",
949 
950  printf( " m_stats_converted_roundsegment2d_to_roundsegment: %u\n",
952 
955 #endif
956 
957  if( aStatusTextReporter )
958  {
959  // Calculation time in seconds
960  const double calculation_time = (double)( GetRunningMicroSecs() -
961  stats_startReloadTime ) / 1e6;
962 
963  aStatusTextReporter->Report( wxString::Format( _( "Reload time %.3f s" ),
964  calculation_time ) );
965  }
966 }
std::map< PCB_LAYER_ID, CBVHCONTAINER2D * > MAP_CONTAINER_2D
A type that stores a container of 2d objects for each layer id.
Definition: cinfo3d_visu.h:55
void GetListObjectsIntersects(const CBBOX2D &aBBox, CONST_LIST_OBJECT2D &aOutList) const override
GetListObjectsIntersects - Get a list of objects that intersects a bbox.
const LIST_OBJECT2D & GetList() const
Definition: ccontainer2d.h:62
struct C3D_RENDER_RAYTRACING::@33 m_materials
SFVEC3F GetLayerColor(PCB_LAYER_ID aLayerId) const
GetLayerColor - get the technical color of a layer.
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
Directional light - a light based only on a direction vector.
Definition: clight.h:114
void PrintStats()
Definition: cobject2d.cpp:60
Class BOARD_ITEM is a base class for any item which can be embedded within the BOARD container class...
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
const SHAPE_POLY_SET & GetBoardPoly() const
GetBoardPoly - Get the current polygon of the epoxy board.
Definition: cinfo3d_visu.h:252
void create_3d_object_from(CCONTAINER &aDstContainer, const COBJECT2D *aObject2D, float aZMin, float aZMax, const CMATERIAL *aMaterial, const SFVEC3F &aObjColor)
Function create_3d_object_from.
std::list< const COBJECT2D * > CONST_LIST_OBJECT2D
Definition: ccontainer2d.h:37
const BOARD_ITEM & GetBoardItem() const
Definition: cobject2d.h:75
const SFVEC3F & Min() const
Function Min return the minimun vertex pointer.
Definition: cbbox.h:205
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
bool IsInitialized() const
Function IsInitialized check if this bounding box is already initialized.
Definition: cbbox.cpp:87
#define RANGE_SCALE_3D
This defines the range that all coord will have to be rendered.
Definition: cinfo3d_visu.h:63
float GetStats_Med_Via_Hole_Diameter3DU() const
GetStats_Med_Via_Hole_Diameter3DU - Average diameter of the via holes.
Definition: cinfo3d_visu.h:374
void PrintStats()
Definition: cobject.cpp:57
CINFO3D_VISU & m_settings
settings refrence in use for this render
float GetLayerTopZpos3DU(PCB_LAYER_ID aLayerId) const
GetLayerTopZpos3DU - Get the top z position.
Definition: cinfo3d_visu.h:280
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
SFVEC3D m_BoardBodyColor
in realistic mode: FR4 board color
Definition: cinfo3d_visu.h:505
unsigned int m_stats_converted_dummy_to_plane
#define CSGITEM_EMPTY
This class is used to make constructive solig geometry for items objects on layers.
CGENERICACCELERATOR * m_accelerator
void SetColor(const SFVEC3F &aColor)
Definition: ctriangle.cpp:161
const MAP_CONTAINER_2D & GetMapLayersHoles() const
GetMapLayersHoles -Get the map of container that have the holes per layer.
Definition: cinfo3d_visu.h:299
PCB_LAYER_ID
A quick note on layer IDs:
void SetColor(SFVEC3F aObjColor)
Definition: ccylinder.h:51
const SFVEC3F & GetBoardCenter3DU() const
GetBoardCenter - the board center position in 3d units.
Definition: cinfo3d_visu.h:189
float NextFloatDown(float v)
Definition: 3d_fastmath.h:157
float GetLayerBottomZpos3DU(PCB_LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
Class SHAPE_POLY_SET.
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
void Add(CLIGHT *aLight)
Add - Add a light to the container.
Definition: clight.h:186
OBJECT2D_TYPE GetObjectType() const
Definition: cobject2d.h:125
Point light based on: http://ogldev.atspace.co.uk/www/tutorial20/tutorial20.html. ...
Definition: clight.h:67
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
#define CSGITEM_FULL
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
SFVEC3D m_SolderPasteColor
in realistic mode: solder paste color
Definition: cinfo3d_visu.h:507
A triangle object.
Definition: ctriangle.h:42
CDIRECTIONALLIGHT * m_camera_light
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
SFVEC3D m_SolderMaskColor
in realistic mode: solder mask color
Definition: cinfo3d_visu.h:506
const CBBOX & GetBBox() const
Definition: ccontainer.h:67
void Fracture(POLYGON_MODE aFastMode)
Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the oute...
static COBJECT2D_STATS & Instance()
Definition: cobject2d.h:146
void Scale(float aScale)
Function Scale scales a bounding box by its center.
Definition: cbbox.cpp:194
A vertical cylinder.
Definition: ccylinder.h:38
SFVEC3F GetCenter() const
Function GetCenter return the center point of the bounding box.
Definition: cbbox.cpp:135
void ResetStats()
Definition: cobject.h:106
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
const SFVEC2F & GetCentroid() const
Definition: cobject2d.h:123
SFVEC3D m_SilkScreenColor
in realistic mode: SilkScreen color
Definition: cinfo3d_visu.h:508
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
std::list< COBJECT2D * > LIST_OBJECT2D
Definition: ccontainer2d.h:36
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
float NextFloatUp(float v)
Definition: 3d_fastmath.h:136
void SetBoardLookAtPos(const SFVEC3F &aBoardPos)
Definition: ccamera.h:115
static COBJECT3D_STATS & Instance()
Definition: cobject.h:116
void SetCastShadows(bool aCastShadow)
Definition: clight.h:57
SFVEC3F SphericalToCartesian(float aInclination, float aAzimuth)
SphericalToCartesian.
Definition: 3d_math.h:43
void ResetStats()
Definition: cobject2d.h:135
unsigned int GetStats_Nr_Vias() const
GetStats_Nr_Vias - Get statistics of the nr of vias.
Definition: cinfo3d_visu.h:362
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
CCONTAINER2D * m_outlineBoard2dObjects
const CBVHCONTAINER2D & GetThroughHole_Outer() const
GetThroughHole_Outer - Get the inflated ThroughHole container.
Definition: cinfo3d_visu.h:305
float GetStats_Med_Hole_Diameter3DU() const
GetStats_Med_Hole_Diameter3DU - Average diameter of holes.
Definition: cinfo3d_visu.h:380
void Clear()
Clear - Remove all lights from the container.
Definition: clight.h:165
SFVEC2F GetExtent() const
Function GetExtent.
Definition: cbbox2d.cpp:127
virtual bool Intersects(const CBBOX2D &aBBox) const =0
Function Intersects.
Class CBBOX manages a bounding box defined by two SFVEC3F min max points.
Definition: cbbox.h:40
MAP_MODEL_MATERIALS m_model_materials
Stores materials of the 3D models.
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
const LIST_OBJECT & GetList() const
Definition: ccontainer.h:63
const MAP_CONTAINER_2D & GetMapLayers() const
GetMapLayers - Get the map of container that have the objects per layer.
Definition: cinfo3d_visu.h:293
#define min(a, b)
Definition: auxiliary.h:85
void InitSettings(REPORTER *aStatusTextReporter)
InitSettings - Function to be called by the render when it need to reload the settings for the board...
void Convert_path_polygon_to_polygon_blocks_and_dummy_blocks(const SHAPE_POLY_SET &aMainPath, CGENERICCONTAINER2D &aDstContainer, float aBiuTo3DunitsScale, float aDivFactor, const BOARD_ITEM &aBoardItem)
Convert_path_polygon_to_polygon_blocks_and_dummy_blocks This function will use a polygon in the forma...
Definition: cpolygon2d.cpp:406
unsigned int GetStats_Nr_Holes() const
GetStats_Nr_Holes - Get statistics of the nr of holes.
Definition: cinfo3d_visu.h:368
const CBBOX & GetBBox3DU() const
GetBBox3DU - Get the bbox of the pcb board.
Definition: cinfo3d_visu.h:147
void C3D_RENDER_BASE::ReloadRequest ( )
inlineinherited

ReloadRequest - !TODO: this must be reviewed to add flags to improve specific render.

Definition at line 73 of file c3d_render_base.h.

References C3D_RENDER_BASE::m_reloadRequested.

Referenced by EDA_3D_CANVAS::ReloadRequest(), EDA_3D_CANVAS::RenderEngineChanged(), and EDA_3D_CANVAS::RenderRaytracingRequest().

73 { m_reloadRequested = true; }
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
void C3D_RENDER_RAYTRACING::render ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 300 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), ConvertSRGBToLinear(), Format(), CCAMERA::GetDir(), GetRunningMicroSecs(), CINFO3D_VISU::m_BgColorBot, m_BgColorBot_LinearRGB, CINFO3D_VISU::m_BgColorTop, m_BgColorTop_LinearRGB, m_camera_light, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_stats_start_rendering_time, RENDER_ENGINE_OPENGL_LEGACY, CINFO3D_VISU::RenderEngineGet(), REPORTER::Report(), restart_render_state(), rt_render_post_process_blur_finish(), rt_render_post_process_shade(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_MAX, RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH, RT_RENDER_STATE_POST_PROCESS_SHADE, RT_RENDER_STATE_TRACING, rt_render_tracing(), and CDIRECTIONALLIGHT::SetDirection().

Referenced by Redraw().

301 {
304  {
306 
307  if( m_camera_light )
309 
311  {
312  // Set all pixels of PBO transparent (Alpha to 0)
313  // This way it will draw the full buffer but only shows the updated (
314  // already calculated) squares
315  // /////////////////////////////////////////////////////////////////////
316  unsigned int nPixels = m_realBufferSize.x * m_realBufferSize.y;
317  GLubyte *tmp_ptrPBO = ptrPBO + 3; // PBO is RGBA
318 
319  for( unsigned int i = 0; i < nPixels; ++i )
320  {
321  *tmp_ptrPBO = 0;
322  tmp_ptrPBO += 4; // PBO is RGBA
323  }
324  }
325 
328  }
329 
330  switch( m_rt_render_state )
331  {
333  rt_render_tracing( ptrPBO, aStatusTextReporter );
334  break;
335 
337  rt_render_post_process_shade( ptrPBO, aStatusTextReporter );
338  break;
339 
341  rt_render_post_process_blur_finish( ptrPBO, aStatusTextReporter );
342  break;
343 
344  default:
345  wxASSERT_MSG( false, "Invalid state on m_rt_render_state");
347  break;
348  }
349 
350  if( aStatusTextReporter && (m_rt_render_state == RT_RENDER_STATE_FINISH) )
351  {
352  // Calculation time in seconds
353  const double calculation_time = (double)( GetRunningMicroSecs() -
355 
356  aStatusTextReporter->Report( wxString::Format( _( "Rendering time %.3f s" ),
357  calculation_time ) );
358  }
359 }
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
void rt_render_post_process_shade(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
const SFVEC3F & GetDir() const
Definition: ccamera.h:109
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
RT_RENDER_STATE m_rt_render_state
State used on quality render.
void rt_render_tracing(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
void rt_render_post_process_blur_finish(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
CDIRECTIONALLIGHT * m_camera_light
RENDER_ENGINE RenderEngineGet() const
RenderEngineGet.
Definition: cinfo3d_visu.h:234
void SetDirection(const SFVEC3F &aDir)
SetDirection - Set directional light orientation.
Definition: clight.h:129
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
unsigned long int m_stats_start_rendering_time
Time that the render starts.
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void C3D_RENDER_RAYTRACING::render_preview ( GLubyte *  ptrPBO)
private

Definition at line 1088 of file c3d_render_raytracing.cpp.

References BlendColor(), CINFO3D_VISU::CameraGet(), RAY::Init(), CGENERICACCELERATOR::Intersect(), COBJECT::Intersect(), m_accelerator, CINFO3D_VISU::m_BgColorBot, CINFO3D_VISU::m_BgColorTop, m_blockPositionsFast, HITINFO_PACKET::m_HitInfo, HITINFO::m_HitNormal, m_isPreview, m_realBufferSize, C3D_RENDER_BASE::m_settings, HITINFO::m_tHit, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, HITINFO::pHitObject, RAYPACKET_DIM, RAYPACKET_RAYS_PER_PACKET, SetPixel(), and shadeHit().

Referenced by Redraw().

1089 {
1090  m_isPreview = true;
1091 
1092  unsigned int nrBlocks = m_blockPositionsFast.size();
1093 
1094  #pragma omp parallel for schedule(dynamic)
1095  for( signed int iBlock = 0; iBlock < (int)nrBlocks; iBlock++ )
1096  {
1097  const SFVEC2UI &windowPosUI = m_blockPositionsFast[ iBlock ];
1098  const SFVEC2I windowsPos = SFVEC2I( windowPosUI.x + m_xoffset,
1099  windowPosUI.y + m_yoffset );
1100 
1101  RAYPACKET blockPacket( m_settings.CameraGet(), windowsPos, 4 );
1102 
1104 
1105  // Initialize hitPacket with a "not hit" information
1106  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
1107  {
1108  hitPacket[i].m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
1109  hitPacket[i].m_HitInfo.m_acc_node_info = 0;
1110  hitPacket[i].m_hitresult = false;
1111  }
1112 
1113  // Intersect packet block
1114  m_accelerator->Intersect( blockPacket, hitPacket );
1115 
1116 
1117  // Calculate background gradient color
1118  // /////////////////////////////////////////////////////////////////////
1119  SFVEC3F bgColor[RAYPACKET_DIM];
1120 
1121  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
1122  {
1123  const float posYfactor = (float)(windowsPos.y + y * 4.0f) / (float)m_windowSize.y;
1124 
1125  bgColor[y] = (SFVEC3F)m_settings.m_BgColorTop * SFVEC3F(posYfactor) +
1126  (SFVEC3F)m_settings.m_BgColorBot * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) );
1127  }
1128 
1129  CCOLORRGB hitColorShading[RAYPACKET_RAYS_PER_PACKET];
1130 
1131  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
1132  {
1133  const SFVEC3F bhColorY = bgColor[i / RAYPACKET_DIM];
1134 
1135  if( hitPacket[i].m_hitresult == true )
1136  {
1137  const SFVEC3F hitColor = shadeHit( bhColorY,
1138  blockPacket.m_ray[i],
1139  hitPacket[i].m_HitInfo,
1140  false,
1141  0,
1142  false );
1143 
1144  hitColorShading[i] = CCOLORRGB( hitColor );
1145  }
1146  else
1147  hitColorShading[i] = bhColorY;
1148  }
1149 
1150  CCOLORRGB cLRB_old[(RAYPACKET_DIM - 1)];
1151 
1152  for( unsigned int y = 0; y < (RAYPACKET_DIM - 1); ++y )
1153  {
1154 
1155  const SFVEC3F bgColorY = bgColor[y];
1156  const CCOLORRGB bgColorYRGB = CCOLORRGB( bgColorY );
1157 
1158  // This stores cRTB from the last block to be reused next time in a cLTB pixel
1159  CCOLORRGB cRTB_old;
1160 
1161  //RAY cRTB_ray;
1162  //HITINFO cRTB_hitInfo;
1163 
1164  for( unsigned int x = 0; x < (RAYPACKET_DIM - 1); ++x )
1165  {
1166  // pxl 0 pxl 1 pxl 2 pxl 3 pxl 4
1167  // x0 x1 ...
1168  // .---------------------------.
1169  // y0 | cLT | cxxx | cLRT | cxxx | cRT |
1170  // | cxxx | cLTC | cxxx | cRTC | cxxx |
1171  // | cLTB | cxxx | cC | cxxx | cRTB |
1172  // | cxxx | cLBC | cxxx | cRBC | cxxx |
1173  // '---------------------------'
1174  // y1 | cLB | cxxx | cLRB | cxxx | cRB |
1175 
1176  const unsigned int iLT = ((x + 0) + RAYPACKET_DIM * (y + 0));
1177  const unsigned int iRT = ((x + 1) + RAYPACKET_DIM * (y + 0));
1178  const unsigned int iLB = ((x + 0) + RAYPACKET_DIM * (y + 1));
1179  const unsigned int iRB = ((x + 1) + RAYPACKET_DIM * (y + 1));
1180 
1181  // !TODO: skip when there are no hits
1182 
1183 
1184  const CCOLORRGB &cLT = hitColorShading[ iLT ];
1185  const CCOLORRGB &cRT = hitColorShading[ iRT ];
1186  const CCOLORRGB &cLB = hitColorShading[ iLB ];
1187  const CCOLORRGB &cRB = hitColorShading[ iRB ];
1188 
1189  // Trace and shade cC
1190  // /////////////////////////////////////////////////////////////
1191  CCOLORRGB cC = bgColorYRGB;
1192 
1193  const SFVEC3F &oriLT = blockPacket.m_ray[ iLT ].m_Origin;
1194  const SFVEC3F &oriRB = blockPacket.m_ray[ iRB ].m_Origin;
1195 
1196  const SFVEC3F &dirLT = blockPacket.m_ray[ iLT ].m_Dir;
1197  const SFVEC3F &dirRB = blockPacket.m_ray[ iRB ].m_Dir;
1198 
1199  SFVEC3F oriC;
1200  SFVEC3F dirC;
1201 
1202  HITINFO centerHitInfo;
1203  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1204 
1205  bool hittedC = false;
1206 
1207  if( (hitPacket[ iLT ].m_hitresult == true) ||
1208  (hitPacket[ iRT ].m_hitresult == true) ||
1209  (hitPacket[ iLB ].m_hitresult == true) ||
1210  (hitPacket[ iRB ].m_hitresult == true) )
1211  {
1212 
1213  oriC = ( oriLT + oriRB ) * 0.5f;
1214  dirC = glm::normalize( ( dirLT + dirRB ) * 0.5f );
1215 
1216  // Trace the center ray
1217  RAY centerRay;
1218  centerRay.Init( oriC, dirC );
1219 
1220  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1221  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1222  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1223  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1224 
1225  if( nodeLT != 0 )
1226  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLT );
1227 
1228  if( ( nodeRT != 0 ) &&
1229  ( nodeRT != nodeLT ) )
1230  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRT );
1231 
1232  if( ( nodeLB != 0 ) &&
1233  ( nodeLB != nodeLT ) &&
1234  ( nodeLB != nodeRT ) )
1235  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLB );
1236 
1237  if( ( nodeRB != 0 ) &&
1238  ( nodeRB != nodeLB ) &&
1239  ( nodeRB != nodeLT ) &&
1240  ( nodeRB != nodeRT ) )
1241  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRB );
1242 
1243  if( hittedC )
1244  cC = CCOLORRGB( shadeHit( bgColorY, centerRay, centerHitInfo, false, 0, false ) );
1245  else
1246  {
1247  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1248  hittedC = m_accelerator->Intersect( centerRay, centerHitInfo );
1249 
1250  if( hittedC )
1251  cC = CCOLORRGB( shadeHit( bgColorY,
1252  centerRay,
1253  centerHitInfo,
1254  false,
1255  0,
1256  false ) );
1257  }
1258  }
1259 
1260  // Trace and shade cLRT
1261  // /////////////////////////////////////////////////////////////
1262  CCOLORRGB cLRT = bgColorYRGB;
1263 
1264  const SFVEC3F &oriRT = blockPacket.m_ray[ iRT ].m_Origin;
1265  const SFVEC3F &dirRT = blockPacket.m_ray[ iRT ].m_Dir;
1266 
1267  if( y == 0 )
1268  {
1269  // Trace the center ray
1270  RAY rayLRT;
1271  rayLRT.Init( ( oriLT + oriRT ) * 0.5f,
1272  glm::normalize( ( dirLT + dirRT ) * 0.5f ) );
1273 
1274  HITINFO hitInfoLRT;
1275  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1276 
1277  if( hitPacket[ iLT ].m_hitresult &&
1278  hitPacket[ iRT ].m_hitresult &&
1279  (hitPacket[ iLT ].m_HitInfo.pHitObject == hitPacket[ iRT ].m_HitInfo.pHitObject) )
1280  {
1281  hitInfoLRT.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1282  hitInfoLRT.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1283  hitPacket[ iRT ].m_HitInfo.m_tHit ) * 0.5f;
1284  hitInfoLRT.m_HitNormal =
1285  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1286  hitPacket[ iRT ].m_HitInfo.m_HitNormal ) * 0.5f );
1287 
1288  cLRT = CCOLORRGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) );
1289  cLRT = BlendColor( cLRT, BlendColor( cLT, cRT) );
1290  }
1291  else
1292  {
1293  if( hitPacket[ iLT ].m_hitresult ||
1294  hitPacket[ iRT ].m_hitresult ) // If any hits
1295  {
1296  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1297  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1298 
1299  bool hittedLRT = false;
1300 
1301  if( nodeLT != 0 )
1302  hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT, nodeLT );
1303 
1304  if( ( nodeRT != 0 ) &&
1305  ( nodeRT != nodeLT ) )
1306  hittedLRT |= m_accelerator->Intersect( rayLRT,
1307  hitInfoLRT,
1308  nodeRT );
1309 
1310  if( hittedLRT )
1311  cLRT = CCOLORRGB( shadeHit( bgColorY,
1312  rayLRT,
1313  hitInfoLRT,
1314  false,
1315  0,
1316  false ) );
1317  else
1318  {
1319  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1320 
1321  if( m_accelerator->Intersect( rayLRT,hitInfoLRT ) )
1322  cLRT = CCOLORRGB( shadeHit( bgColorY,
1323  rayLRT,
1324  hitInfoLRT,
1325  false,
1326  0,
1327  false ) );
1328  }
1329  }
1330  }
1331  }
1332  else
1333  cLRT = cLRB_old[x];
1334 
1335 
1336  // Trace and shade cLTB
1337  // /////////////////////////////////////////////////////////////
1338  CCOLORRGB cLTB = bgColorYRGB;
1339 
1340  if( x == 0 )
1341  {
1342  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1343  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1344 
1345  // Trace the center ray
1346  RAY rayLTB;
1347  rayLTB.Init( ( oriLT + oriLB ) * 0.5f,
1348  glm::normalize( ( dirLT + dirLB ) * 0.5f ) );
1349 
1350  HITINFO hitInfoLTB;
1351  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1352 
1353  if( hitPacket[ iLT ].m_hitresult &&
1354  hitPacket[ iLB ].m_hitresult &&
1355  ( hitPacket[ iLT ].m_HitInfo.pHitObject ==
1356  hitPacket[ iLB ].m_HitInfo.pHitObject ) )
1357  {
1358  hitInfoLTB.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1359  hitInfoLTB.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1360  hitPacket[ iLB ].m_HitInfo.m_tHit ) * 0.5f;
1361  hitInfoLTB.m_HitNormal =
1362  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1363  hitPacket[ iLB ].m_HitInfo.m_HitNormal ) * 0.5f );
1364  cLTB = CCOLORRGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) );
1365  cLTB = BlendColor( cLTB, BlendColor( cLT, cLB) );
1366  }
1367  else
1368  {
1369  if( hitPacket[ iLT ].m_hitresult ||
1370  hitPacket[ iLB ].m_hitresult ) // If any hits
1371  {
1372  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1373  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1374 
1375  bool hittedLTB = false;
1376 
1377  if( nodeLT != 0 )
1378  hittedLTB |= m_accelerator->Intersect( rayLTB,
1379  hitInfoLTB,
1380  nodeLT );
1381 
1382  if( ( nodeLB != 0 ) &&
1383  ( nodeLB != nodeLT ) )
1384  hittedLTB |= m_accelerator->Intersect( rayLTB,
1385  hitInfoLTB,
1386  nodeLB );
1387 
1388  if( hittedLTB )
1389  cLTB = CCOLORRGB( shadeHit( bgColorY,
1390  rayLTB,
1391  hitInfoLTB,
1392  false,
1393  0,
1394  false ) );
1395  else
1396  {
1397  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1398 
1399  if( m_accelerator->Intersect( rayLTB, hitInfoLTB ) )
1400  cLTB = CCOLORRGB( shadeHit( bgColorY,
1401  rayLTB,
1402  hitInfoLTB,
1403  false,
1404  0,
1405  false ) );
1406  }
1407  }
1408  }
1409  }
1410  else
1411  cLTB = cRTB_old;
1412 
1413 
1414  // Trace and shade cRTB
1415  // /////////////////////////////////////////////////////////////
1416  CCOLORRGB cRTB = bgColorYRGB;
1417 
1418  // Trace the center ray
1419  RAY rayRTB;
1420  rayRTB.Init( ( oriRT + oriRB ) * 0.5f,
1421  glm::normalize( ( dirRT + dirRB ) * 0.5f ) );
1422 
1423  HITINFO hitInfoRTB;
1424  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1425 
1426  if( hitPacket[ iRT ].m_hitresult &&
1427  hitPacket[ iRB ].m_hitresult &&
1428  ( hitPacket[ iRT ].m_HitInfo.pHitObject ==
1429  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1430  {
1431  hitInfoRTB.pHitObject = hitPacket[ iRT ].m_HitInfo.pHitObject;
1432 
1433  hitInfoRTB.m_tHit = ( hitPacket[ iRT ].m_HitInfo.m_tHit +
1434  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1435 
1436  hitInfoRTB.m_HitNormal =
1437  glm::normalize( ( hitPacket[ iRT ].m_HitInfo.m_HitNormal +
1438  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1439 
1440  cRTB = CCOLORRGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false ) );
1441  cRTB = BlendColor( cRTB, BlendColor( cRT, cRB) );
1442  }
1443  else
1444  {
1445  if( hitPacket[ iRT ].m_hitresult ||
1446  hitPacket[ iRB ].m_hitresult ) // If any hits
1447  {
1448  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1449  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1450 
1451  bool hittedRTB = false;
1452 
1453  if( nodeRT != 0 )
1454  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRT );
1455 
1456  if( ( nodeRB != 0 ) &&
1457  ( nodeRB != nodeRT ) )
1458  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRB );
1459 
1460  if( hittedRTB )
1461  cRTB = CCOLORRGB( shadeHit( bgColorY,
1462  rayRTB,
1463  hitInfoRTB,
1464  false,
1465  0,
1466  false) );
1467  else
1468  {
1469  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1470 
1471  if( m_accelerator->Intersect( rayRTB, hitInfoRTB ) )
1472  cRTB = CCOLORRGB( shadeHit( bgColorY,
1473  rayRTB,
1474  hitInfoRTB,
1475  false,
1476  0,
1477  false ) );
1478  }
1479  }
1480  }
1481 
1482  cRTB_old = cRTB;
1483 
1484 
1485  // Trace and shade cLRB
1486  // /////////////////////////////////////////////////////////////
1487  CCOLORRGB cLRB = bgColorYRGB;
1488 
1489  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1490  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1491 
1492  // Trace the center ray
1493  RAY rayLRB;
1494  rayLRB.Init( ( oriLB + oriRB ) * 0.5f,
1495  glm::normalize( ( dirLB + dirRB ) * 0.5f ) );
1496 
1497  HITINFO hitInfoLRB;
1498  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1499 
1500  if( hitPacket[ iLB ].m_hitresult &&
1501  hitPacket[ iRB ].m_hitresult &&
1502  ( hitPacket[ iLB ].m_HitInfo.pHitObject ==
1503  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1504  {
1505  hitInfoLRB.pHitObject = hitPacket[ iLB ].m_HitInfo.pHitObject;
1506 
1507  hitInfoLRB.m_tHit = ( hitPacket[ iLB ].m_HitInfo.m_tHit +
1508  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1509 
1510  hitInfoLRB.m_HitNormal =
1511  glm::normalize( ( hitPacket[ iLB ].m_HitInfo.m_HitNormal +
1512  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1513 
1514  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1515  cLRB = BlendColor( cLRB, BlendColor( cLB, cRB) );
1516  }
1517  else
1518  {
1519  if( hitPacket[ iLB ].m_hitresult ||
1520  hitPacket[ iRB ].m_hitresult ) // If any hits
1521  {
1522  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1523  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1524 
1525  bool hittedLRB = false;
1526 
1527  if( nodeLB != 0 )
1528  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeLB );
1529 
1530  if( ( nodeRB != 0 ) &&
1531  ( nodeRB != nodeLB ) )
1532  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeRB );
1533 
1534  if( hittedLRB )
1535  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1536  else
1537  {
1538  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1539 
1540  if( m_accelerator->Intersect( rayLRB, hitInfoLRB ) )
1541  cLRB = CCOLORRGB( shadeHit( bgColorY,
1542  rayLRB,
1543  hitInfoLRB,
1544  false,
1545  0,
1546  false ) );
1547  }
1548  }
1549  }
1550 
1551  cLRB_old[x] = cLRB;
1552 
1553 
1554  // Trace and shade cLTC
1555  // /////////////////////////////////////////////////////////////
1556  CCOLORRGB cLTC = BlendColor( cLT , cC );
1557 
1558  if( hitPacket[ iLT ].m_hitresult || hittedC )
1559  {
1560  // Trace the center ray
1561  RAY rayLTC;
1562  rayLTC.Init( ( oriLT + oriC ) * 0.5f,
1563  glm::normalize( ( dirLT + dirC ) * 0.5f ) );
1564 
1565  HITINFO hitInfoLTC;
1566  hitInfoLTC.m_tHit = std::numeric_limits<float>::infinity();
1567 
1568  bool hitted = false;
1569 
1570  if( hittedC )
1571  hitted = centerHitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC );
1572  else
1573  if( hitPacket[ iLT ].m_hitresult )
1574  hitted = hitPacket[ iLT ].m_HitInfo.pHitObject->Intersect( rayLTC,
1575  hitInfoLTC );
1576 
1577  if( hitted )
1578  cLTC = CCOLORRGB( shadeHit( bgColorY, rayLTC, hitInfoLTC, false, 0, false ) );
1579  }
1580 
1581 
1582  // Trace and shade cRTC
1583  // /////////////////////////////////////////////////////////////
1584  CCOLORRGB cRTC = BlendColor( cRT , cC );
1585 
1586  if( hitPacket[ iRT ].m_hitresult || hittedC )
1587  {
1588  // Trace the center ray
1589  RAY rayRTC;
1590  rayRTC.Init( ( oriRT + oriC ) * 0.5f,
1591  glm::normalize( ( dirRT + dirC ) * 0.5f ) );
1592 
1593  HITINFO hitInfoRTC;
1594  hitInfoRTC.m_tHit = std::numeric_limits<float>::infinity();
1595 
1596  bool hitted = false;
1597 
1598  if( hittedC )
1599  hitted = centerHitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC );
1600  else
1601  if( hitPacket[ iRT ].m_hitresult )
1602  hitted = hitPacket[ iRT ].m_HitInfo.pHitObject->Intersect( rayRTC,
1603  hitInfoRTC );
1604 
1605  if( hitted )
1606  cRTC = CCOLORRGB( shadeHit( bgColorY, rayRTC, hitInfoRTC, false, 0, false ) );
1607  }
1608 
1609 
1610  // Trace and shade cLBC
1611  // /////////////////////////////////////////////////////////////
1612  CCOLORRGB cLBC = BlendColor( cLB , cC );
1613 
1614  if( hitPacket[ iLB ].m_hitresult || hittedC )
1615  {
1616  // Trace the center ray
1617  RAY rayLBC;
1618  rayLBC.Init( ( oriLB + oriC ) * 0.5f,
1619  glm::normalize( ( dirLB + dirC ) * 0.5f ) );
1620 
1621  HITINFO hitInfoLBC;
1622  hitInfoLBC.m_tHit = std::numeric_limits<float>::infinity();
1623 
1624  bool hitted = false;
1625 
1626  if( hittedC )
1627  hitted = centerHitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC );
1628  else
1629  if( hitPacket[ iLB ].m_hitresult )
1630  hitted = hitPacket[ iLB ].m_HitInfo.pHitObject->Intersect( rayLBC,
1631  hitInfoLBC );
1632 
1633  if( hitted )
1634  cLBC = CCOLORRGB( shadeHit( bgColorY, rayLBC, hitInfoLBC, false, 0, false ) );
1635  }
1636 
1637 
1638  // Trace and shade cRBC
1639  // /////////////////////////////////////////////////////////////
1640  CCOLORRGB cRBC = BlendColor( cRB , cC );
1641 
1642  if( hitPacket[ iRB ].m_hitresult || hittedC )
1643  {
1644  // Trace the center ray
1645  RAY rayRBC;
1646  rayRBC.Init( ( oriRB + oriC ) * 0.5f,
1647  glm::normalize( ( dirRB + dirC ) * 0.5f ) );
1648 
1649  HITINFO hitInfoRBC;
1650  hitInfoRBC.m_tHit = std::numeric_limits<float>::infinity();
1651 
1652  bool hitted = false;
1653 
1654  if( hittedC )
1655  hitted = centerHitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC );
1656  else
1657  if( hitPacket[ iRB ].m_hitresult )
1658  hitted = hitPacket[ iRB ].m_HitInfo.pHitObject->Intersect( rayRBC,
1659  hitInfoRBC );
1660 
1661  if( hitted )
1662  cRBC = CCOLORRGB( shadeHit( bgColorY, rayRBC, hitInfoRBC, false, 0, false ) );
1663  }
1664 
1665 
1666  // Set pixel colors
1667  // /////////////////////////////////////////////////////////////
1668 
1669  GLubyte *ptr = &ptrPBO[ (4 * x + m_blockPositionsFast[iBlock].x +
1670  m_realBufferSize.x *
1671  (m_blockPositionsFast[iBlock].y + 4 * y)) * 4 ];
1672  SetPixel( ptr + 0, cLT );
1673  SetPixel( ptr + 4, BlendColor( cLT, cLRT, cLTC ) );
1674  SetPixel( ptr + 8, cLRT );
1675  SetPixel( ptr + 12, BlendColor( cLRT, cRT, cRTC ) );
1676 
1677  ptr += m_realBufferSize.x * 4;
1678  SetPixel( ptr + 0, BlendColor( cLT , cLTB, cLTC ) );
1679  SetPixel( ptr + 4, BlendColor( cLTC, BlendColor( cLT , cC ) ) );
1680  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRT, cLTC, cRTC ) ) );
1681  SetPixel( ptr + 12, BlendColor( cRTC, BlendColor( cRT , cC ) ) );
1682 
1683  ptr += m_realBufferSize.x * 4;
1684  SetPixel( ptr + 0, cLTB );
1685  SetPixel( ptr + 4, BlendColor( cC, BlendColor( cLTB, cLTC, cLBC ) ) );
1686  SetPixel( ptr + 8, cC );
1687  SetPixel( ptr + 12, BlendColor( cC, BlendColor( cRTB, cRTC, cRBC ) ) );
1688 
1689  ptr += m_realBufferSize.x * 4;
1690  SetPixel( ptr + 0, BlendColor( cLB , cLTB, cLBC ) );
1691  SetPixel( ptr + 4, BlendColor( cLBC, BlendColor( cLB , cC ) ) );
1692  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRB, cLBC, cRBC ) ) );
1693  SetPixel( ptr + 12, BlendColor( cRBC, BlendColor( cRB , cC ) ) );
1694  }
1695  }
1696  }
1697 
1698  // Wait for all threads to finish (not sure if this is need)
1699  #pragma omp barrier
1700 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
void Init(const SFVEC3F &o, const SFVEC3F &d)
Definition: ray.cpp:38
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
Definition: ray.h:43
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
float m_tHit
( 4) distance
Definition: hitinfo.h:43
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
CGENERICACCELERATOR * m_accelerator
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
HITINFO m_HitInfo
Definition: hitinfo.h:63
wxSize m_windowSize
The window size that this camera is working.
const COBJECT * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:45
std::vector< SFVEC2UI > m_blockPositionsFast
this encodes the Morton code positions (on fast preview mode)
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
Functions Intersect.
static void SetPixel(GLubyte *p, const CCOLORRGB &v)
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
#define RAYPACKET_RAYS_PER_PACKET
Definition: raypacket.h:40
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
CCOLORRGB BlendColor(const CCOLORRGB &aC1, const CCOLORRGB &aC2)
Definition: ccolorrgb.cpp:42
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:42
void C3D_RENDER_RAYTRACING::restart_render_state ( )
private

Definition at line 126 of file c3d_render_raytracing.cpp.

References GetRunningMicroSecs(), CPOSTSHADER::InitFrame(), m_blockPositions, m_blockPositionsWasProcessed, m_nrBlocksRenderProgress, m_postshader_ssao, m_rt_render_state, m_stats_start_rendering_time, and RT_RENDER_STATE_TRACING.

Referenced by render().

127 {
129 
132 
134 
136 
137  // Mark the blocks not processed yet
138  std::fill( m_blockPositionsWasProcessed.begin(),
140  false );
141 }
std::vector< bool > m_blockPositionsWasProcessed
this flags if a position was already processed (cleared each new render)
long m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
CPOSTSHADER_SSAO m_postshader_ssao
RT_RENDER_STATE m_rt_render_state
State used on quality render.
void InitFrame()
Definition: cpostshader.h:54
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
unsigned long int m_stats_start_rendering_time
Time that the render starts.
void C3D_RENDER_RAYTRACING::rt_final_color ( GLubyte *  ptrPBO,
const SFVEC3F rgbColor,
bool  applyColorSpaceConversion 
)
private

Definition at line 466 of file c3d_render_raytracing.cpp.

References color, and convertLinearToSRGB().

Referenced by rt_render_post_process_blur_finish(), and rt_render_trace_block().

469 {
470 
471  SFVEC3F color = rgbColor;
472 
473 #ifdef USE_SRGB_SPACE
474 
475  // This should be used in future when the KiCad support a greater version of
476  // glm lib.
477  // if( applyColorSpaceConversion )
478  // rgbColor = glm::convertLinearToSRGB( rgbColor );
479 
480  if( applyColorSpaceConversion )
481  color = convertLinearToSRGB( rgbColor );
482 #endif
483 
484  ptrPBO[0] = (unsigned int)glm::clamp( (int)(color.r * 255), 0, 255 );
485  ptrPBO[1] = (unsigned int)glm::clamp( (int)(color.g * 255), 0, 255 );
486  ptrPBO[2] = (unsigned int)glm::clamp( (int)(color.b * 255), 0, 255 );
487  ptrPBO[3] = 255;
488 }
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
static SFVEC3F convertLinearToSRGB(const SFVEC3F &aRGBcolor)
void C3D_RENDER_RAYTRACING::rt_render_post_process_blur_finish ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 954 of file c3d_render_raytracing.cpp.

References CPOSTSHADER_SSAO::ApplyShadeColor(), convertLinearToSRGB(), FL_RENDER_RAYTRACING_POST_PROCESSING, CPOSTSHADER::GetColorAtNotProtected(), CINFO3D_VISU::GetFlag(), m_postshader_ssao, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_shaderBuffer, max, min, rt_final_color(), and RT_RENDER_STATE_FINISH.

Referenced by render().

956 {
957  (void)aStatusTextReporter; //unused
958 
960  {
961  // Now blurs the shader result and compute the final color
962  #pragma omp parallel for schedule(dynamic)
963  for( signed int y = 0; y < (int)m_realBufferSize.y; ++y )
964  {
965  GLubyte *ptr = &ptrPBO[ y * m_realBufferSize.x * 4 ];
966 
967  SFVEC3F *ptrShaderY0 =
968  &m_shaderBuffer[ glm::max((int)y - 2, 0) * m_realBufferSize.x ];
969  SFVEC3F *ptrShaderY1 =
970  &m_shaderBuffer[ glm::max((int)y - 1, 0) * m_realBufferSize.x ];
971  SFVEC3F *ptrShaderY2 =
973  SFVEC3F *ptrShaderY3 =
974  &m_shaderBuffer[ glm::min((int)y + 1, (int)(m_realBufferSize.y - 1)) *
975  m_realBufferSize.x ];
976  SFVEC3F *ptrShaderY4 =
977  &m_shaderBuffer[ glm::min((int)y + 2, (int)(m_realBufferSize.y - 1)) *
978  m_realBufferSize.x ];
979 
980  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
981  {
982 // This #if should be 1, it is here that can be used for debug proposes during development
983 #if 1
984 
985  SFVEC3F bluredShadeColor = (*ptrShaderY0) * 1.0f / 273.0f +
986  (*ptrShaderY1) * 4.0f / 273.0f +
987  (*ptrShaderY2) * 7.0f / 273.0f +
988  (*ptrShaderY3) * 4.0f / 273.0f +
989  (*ptrShaderY4) * 1.0f / 273.0f;
990  if( x > 1 )
991  {
992  ptrShaderY0++;
993  ptrShaderY1++;
994  ptrShaderY2++;
995  ptrShaderY3++;
996  ptrShaderY4++;
997  }
998 
999  bluredShadeColor += (*ptrShaderY0) * 4.0f / 273.0f +
1000  (*ptrShaderY1) *16.0f / 273.0f +
1001  (*ptrShaderY2) *26.0f / 273.0f +
1002  (*ptrShaderY3) *16.0f / 273.0f +
1003  (*ptrShaderY4) * 4.0f / 273.0f;
1004 
1005  if( x > 0 )
1006  {
1007  ptrShaderY0++;
1008  ptrShaderY1++;
1009  ptrShaderY2++;
1010  ptrShaderY3++;
1011  ptrShaderY4++;
1012  }
1013 
1014  bluredShadeColor += (*ptrShaderY0) * 7.0f / 273.0f +
1015  (*ptrShaderY1) *26.0f / 273.0f +
1016  (*ptrShaderY2) *41.0f / 273.0f +
1017  (*ptrShaderY3) *26.0f / 273.0f +
1018  (*ptrShaderY4) * 7.0f / 273.0f;
1019 
1020  if( x < ((int)m_realBufferSize.x - 1) )
1021  {
1022  ptrShaderY0++;
1023  ptrShaderY1++;
1024  ptrShaderY2++;
1025  ptrShaderY3++;
1026  ptrShaderY4++;
1027  }
1028 
1029  bluredShadeColor += (*ptrShaderY0) * 4.0f / 273.0f +
1030  (*ptrShaderY1) *16.0f / 273.0f +
1031  (*ptrShaderY2) *26.0f / 273.0f +
1032  (*ptrShaderY3) *16.0f / 273.0f +
1033  (*ptrShaderY4) * 4.0f / 273.0f;
1034 
1035  if( x < ((int)m_realBufferSize.x - 2) )
1036  {
1037  ptrShaderY0++;
1038  ptrShaderY1++;
1039  ptrShaderY2++;
1040  ptrShaderY3++;
1041  ptrShaderY4++;
1042  }
1043 
1044  bluredShadeColor += (*ptrShaderY0) * 1.0f / 273.0f +
1045  (*ptrShaderY1) * 4.0f / 273.0f +
1046  (*ptrShaderY2) * 7.0f / 273.0f +
1047  (*ptrShaderY3) * 4.0f / 273.0f +
1048  (*ptrShaderY4) * 1.0f / 273.0f;
1049 
1050  ptrShaderY0-= 3;
1051  ptrShaderY1-= 3;
1052  ptrShaderY2-= 3;
1053  ptrShaderY3-= 3;
1054  ptrShaderY4-= 3;
1055 
1056 #ifdef USE_SRGB_SPACE
1058 #else
1059  const SFVEC3F originColor = m_postshader_ssao.GetColorAtNotProtected( SFVEC2I( x,y ) );
1060 #endif
1061 
1062  const SFVEC3F shadedColor = m_postshader_ssao.ApplyShadeColor( SFVEC2I( x,y ), originColor, bluredShadeColor );
1063 #else
1064  // Debug code
1065  //const SFVEC3F shadedColor = SFVEC3F( 1.0f ) -
1066  // m_shaderBuffer[ y * m_realBufferSize.x + x];
1067  const SFVEC3F shadedColor = m_shaderBuffer[ y * m_realBufferSize.x + x ];
1068 #endif
1069 
1070  rt_final_color( ptr, shadedColor, false );
1071 
1072  ptr += 4;
1073  }
1074  }
1075 
1076  // Wait for all threads to finish
1077  #pragma omp barrier
1078 
1079  // Debug code
1080  //m_postshader_ssao.DebugBuffersOutputAsImages();
1081  }
1082 
1083  // End rendering
1085 }
SFVEC3F ApplyShadeColor(const SFVEC2I &aShaderPos, const SFVEC3F &aInputColor, const SFVEC3F &aShadeColor) const override
ApplyShadeColor - apply the final color process using a previous stage color.
const SFVEC3F & GetColorAtNotProtected(const SFVEC2I &aPos) const
void rt_final_color(GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
CPOSTSHADER_SSAO m_postshader_ssao
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
#define max(a, b)
Definition: auxiliary.h:86
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
static SFVEC3F convertLinearToSRGB(const SFVEC3F &aRGBcolor)
#define min(a, b)
Definition: auxiliary.h:85
void C3D_RENDER_RAYTRACING::rt_render_post_process_shade ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 917 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_POST_PROCESSING, CINFO3D_VISU::GetFlag(), m_postshader_ssao, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_shaderBuffer, REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH, and CPOSTSHADER_SSAO::Shade().

Referenced by render().

919 {
920  (void)ptrPBO; // unused
921 
923  {
924  if( aStatusTextReporter )
925  aStatusTextReporter->Report( _("Rendering: Post processing shader") );
926 
927  // Compute the shader value
928  #pragma omp parallel for schedule(dynamic)
929  for( signed int y = 0; y < (int)m_realBufferSize.y; ++y )
930  {
931  SFVEC3F *ptr = &m_shaderBuffer[ y * m_realBufferSize.x ];
932 
933  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
934  {
935  *ptr = m_postshader_ssao.Shade( SFVEC2I( x, y ) );
936  ptr++;
937  }
938  }
939 
940  // Wait for all threads to finish
941  #pragma omp barrier
942 
943  // Set next state
945  }
946  else
947  {
948  // As this was an invalid state, set to finish
950  }
951 }
SFVEC3F Shade(const SFVEC2I &aShaderPos) const override
CPOSTSHADER_SSAO m_postshader_ssao
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void C3D_RENDER_RAYTRACING::rt_render_trace_block ( GLubyte *  ptrPBO,
signed int  iBlock 
)
private

Definition at line 660 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), DISP_FACTOR, FL_RENDER_RAYTRACING_ANTI_ALIASING, FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_SHADOWS, CINFO3D_VISU::GetFlag(), HITINFO_PACKET_init(), CGENERICACCELERATOR::Intersect(), m_accelerator, m_BgColorBot_LinearRGB, m_BgColorTop_LinearRGB, m_blockPositions, m_postshader_ssao, m_realBufferSize, C3D_RENDER_BASE::m_settings, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, RAYPACKET_DIM, RAYPACKET_InitRays_with2DDisplacement(), RAYPACKET_RAYS_PER_PACKET, rt_final_color(), rt_shades_packet(), rt_trace_AA_packet(), and CPOSTSHADER::SetPixelData().

Referenced by rt_render_tracing().

662 {
663  // Initialize ray packets
664  // /////////////////////////////////////////////////////////////////////////
665  const SFVEC2UI &blockPos = m_blockPositions[iBlock];
666  const SFVEC2I blockPosI = SFVEC2I( blockPos.x + m_xoffset,
667  blockPos.y + m_yoffset );
668 
669  RAYPACKET blockPacket( m_settings.CameraGet(),
670  (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, DISP_FACTOR),
671  SFVEC2F(DISP_FACTOR, DISP_FACTOR) // Displacement random factor
672  );
673 
675 
676  HITINFO_PACKET_init( hitPacket_X0Y0 );
677 
678  // Calculate background gradient color
679  // /////////////////////////////////////////////////////////////////////////
680  SFVEC3F bgColor[RAYPACKET_DIM];// Store a vertical gradient color
681 
682  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
683  {
684  const float posYfactor = (float)(blockPosI.y + y) / (float)m_windowSize.y;
685 
686  bgColor[y] = m_BgColorTop_LinearRGB * SFVEC3F(posYfactor) +
687  m_BgColorBot_LinearRGB * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) );
688  }
689 
690  // Intersect ray packets (calculate the intersection with rays and objects)
691  // /////////////////////////////////////////////////////////////////////////
692  if( !m_accelerator->Intersect( blockPacket, hitPacket_X0Y0 ) )
693  {
694 
695  // If block is empty then set shades and continue
697  {
698  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
699  {
700  const SFVEC3F &outColor = bgColor[y];
701 
702  const unsigned int yBlockPos = blockPos.y + y;
703 
704  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
705  {
706  m_postshader_ssao.SetPixelData( blockPos.x + x,
707  yBlockPos,
708  SFVEC3F(),
709  outColor,
710  SFVEC3F(),
711  0,
712  1.0f );
713  }
714  }
715  }
716 
717  // This will set the output color to be displayed
718  // If post processing is enabled, it will not reflect the final result
719  // (as the final color will be computed on post processing)
720  // but it is used for report progress
721 
722  const bool isFinalColor = !m_settings.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING );
723 
724  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
725  {
726  const SFVEC3F &outColor = bgColor[y];
727 
728  const unsigned int yConst = blockPos.x +
729  ( (y + blockPos.y) * m_realBufferSize.x);
730 
731  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
732  {
733  GLubyte *ptr = &ptrPBO[ (yConst + x) * 4 ];
734 
735  rt_final_color( ptr, outColor, isFinalColor );
736  }
737  }
738 
739  // There is nothing more here to do.. there are no hits ..
740  // just background so continue
741  return;
742  }
743 
744 
745  SFVEC3F hitColor_X0Y0[RAYPACKET_RAYS_PER_PACKET];
746 
747  // Shade original (0, 0) hits ("paint" the intersected objects)
748  // /////////////////////////////////////////////////////////////////////////
749  rt_shades_packet( bgColor,
750  blockPacket.m_ray,
751  hitPacket_X0Y0,
753  hitColor_X0Y0 );
754 
756  {
757  SFVEC3F hitColor_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
758 
759 
760  // Intersect one blockPosI + (0.5, 0.5) used for anti aliasing calculation
761  // /////////////////////////////////////////////////////////////////////////
762  HITINFO_PACKET hitPacket_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
763  HITINFO_PACKET_init( hitPacket_AA_X1Y1 );
764 
765  RAYPACKET blockPacket_AA_X1Y1( m_settings.CameraGet(),
766  (SFVEC2F)blockPosI + SFVEC2F(0.5f, 0.5f),
767  SFVEC2F(DISP_FACTOR, DISP_FACTOR) // Displacement random factor
768  );
769 
770  if( !m_accelerator->Intersect( blockPacket_AA_X1Y1, hitPacket_AA_X1Y1 ) )
771  {
772  // Missed all the package
773  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
774  {
775  const SFVEC3F &outColor = bgColor[y];
776 
777  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
778  {
779  hitColor_AA_X1Y1[i] = outColor;
780  }
781  }
782  }
783  else
784  {
785  rt_shades_packet( bgColor,
786  blockPacket_AA_X1Y1.m_ray,
787  hitPacket_AA_X1Y1,
789  hitColor_AA_X1Y1
790  );
791  }
792 
793  SFVEC3F hitColor_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
794  SFVEC3F hitColor_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
795  SFVEC3F hitColor_AA_X0Y1_half[RAYPACKET_RAYS_PER_PACKET];
796 
797  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
798  {
799  const SFVEC3F color_average = ( hitColor_X0Y0[i] +
800  hitColor_AA_X1Y1[i] ) * SFVEC3F(0.5f);
801 
802  hitColor_AA_X1Y0[i] = color_average;
803  hitColor_AA_X0Y1[i] = color_average;
804  hitColor_AA_X0Y1_half[i] = color_average;
805  }
806 
807  RAY blockRayPck_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
808  RAY blockRayPck_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
809  RAY blockRayPck_AA_X1Y1_half[RAYPACKET_RAYS_PER_PACKET];
810 
812  (SFVEC2F)blockPosI + SFVEC2F(0.5f - DISP_FACTOR, DISP_FACTOR),
813  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
814  blockRayPck_AA_X1Y0 );
815 
817  (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, 0.5f - DISP_FACTOR),
818  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
819  blockRayPck_AA_X0Y1 );
820 
822  (SFVEC2F)blockPosI + SFVEC2F(0.25f - DISP_FACTOR, 0.25f - DISP_FACTOR),
823  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
824  blockRayPck_AA_X1Y1_half );
825 
826  rt_trace_AA_packet( bgColor,
827  hitPacket_X0Y0, hitPacket_AA_X1Y1,
828  blockRayPck_AA_X1Y0,
829  hitColor_AA_X1Y0 );
830 
831  rt_trace_AA_packet( bgColor,
832  hitPacket_X0Y0, hitPacket_AA_X1Y1,
833  blockRayPck_AA_X0Y1,
834  hitColor_AA_X0Y1 );
835 
836  rt_trace_AA_packet( bgColor,
837  hitPacket_X0Y0, hitPacket_AA_X1Y1,
838  blockRayPck_AA_X1Y1_half,
839  hitColor_AA_X0Y1_half );
840 
841  // Average the result
842  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
843  {
844  hitColor_X0Y0[i] = ( hitColor_X0Y0[i] +
845  hitColor_AA_X1Y1[i] +
846  hitColor_AA_X1Y0[i] +
847  hitColor_AA_X0Y1[i] +
848  hitColor_AA_X0Y1_half[i]
849  ) * SFVEC3F(1.0f / 5.0f);
850  }
851  }
852 
853 
854  // Copy results to the next stage
855  // /////////////////////////////////////////////////////////////////////
856 
857  GLubyte *ptr = &ptrPBO[ ( blockPos.x +
858  (blockPos.y * m_realBufferSize.x) ) * 4 ];
859 
860  const uint32_t ptrInc = (m_realBufferSize.x - RAYPACKET_DIM) * 4;
861 
863  {
864  SFVEC2I bPos;
865  bPos.y = blockPos.y;
866 
867  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
868  {
869  bPos.x = blockPos.x;
870 
871  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
872  {
873  const SFVEC3F &hColor = hitColor_X0Y0[i];
874 
875  if( hitPacket_X0Y0[i].m_hitresult == true )
876  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
877  hitPacket_X0Y0[i].m_HitInfo.m_HitNormal,
878  hColor,
879  blockPacket.m_ray[i].at(
880  hitPacket_X0Y0[i].m_HitInfo.m_tHit ),
881  hitPacket_X0Y0[i].m_HitInfo.m_tHit,
882  hitPacket_X0Y0[i].m_HitInfo.m_ShadowFactor );
883  else
884  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
885  SFVEC3F(),
886  hColor,
887  SFVEC3F(),
888  0,
889  1.0f );
890 
891  rt_final_color( ptr, hColor, false );
892 
893  bPos.x++;
894  ptr += 4;
895  }
896 
897  ptr += ptrInc;
898  bPos.y++;
899  }
900  }
901  else
902  {
903  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
904  {
905  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
906  {
907  rt_final_color( ptr, hitColor_X0Y0[i], true );
908  ptr += 4;
909  }
910 
911  ptr += ptrInc;
912  }
913  }
914 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
void rt_shades_packet(const SFVEC3F *bgColorY, const RAY *aRayPkt, HITINFO_PACKET *aHitPacket, bool is_testShadow, SFVEC3F *aOutHitColor)
void rt_final_color(GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
CPOSTSHADER_SSAO m_postshader_ssao
Definition: ray.h:43
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
CGENERICACCELERATOR * m_accelerator
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
wxSize m_windowSize
The window size that this camera is working.
void rt_trace_AA_packet(const SFVEC3F *aBgColorY, const HITINFO_PACKET *aHitPck_X0Y0, const HITINFO_PACKET *aHitPck_AA_X1Y1, const RAY *aRayPck, SFVEC3F *aOutHitColor)
static void HITINFO_PACKET_init(HITINFO_PACKET *aHitPacket)
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
void SetPixelData(unsigned int x, unsigned int y, const SFVEC3F &aNormal, const SFVEC3F &aColor, const SFVEC3F &aHitPosition, float aDepth, float aShadowAttFactor)
Definition: cpostshader.cpp:78
#define RAYPACKET_RAYS_PER_PACKET
Definition: raypacket.h:40
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
#define DISP_FACTOR
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
void RAYPACKET_InitRays_with2DDisplacement(const CCAMERA &aCamera, const SFVEC2F &aWindowsPosition, const SFVEC2F &a2DWindowsPosDisplacementFactor, RAY *aRayPck)
Definition: raypacket.cpp:174
void C3D_RENDER_RAYTRACING::rt_render_tracing ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 362 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_POST_PROCESSING, Format(), CINFO3D_VISU::GetFlag(), GetRunningMicroSecs(), m_blockPositions, m_blockPositionsWasProcessed, m_isPreview, m_nrBlocksRenderProgress, m_rt_render_state, C3D_RENDER_BASE::m_settings, REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_POST_PROCESS_SHADE, and rt_render_trace_block().

Referenced by render().

364 {
365  m_isPreview = false;
366  wxASSERT( m_blockPositions.size() <= LONG_MAX );
367 
368  const long nrBlocks = (long) m_blockPositions.size();
369  const unsigned startTime = GetRunningMicroSecs();
370  bool breakLoop = false;
371  int numBlocksRendered = 0;
372 
373  #pragma omp parallel for schedule(dynamic) shared(breakLoop) \
374  firstprivate(ptrPBO, nrBlocks, startTime) reduction(+:numBlocksRendered) default(none)
375  for( long iBlock = 0; iBlock < nrBlocks; iBlock++ )
376  {
377 
378  #pragma omp flush(breakLoop)
379  if( !breakLoop )
380  {
381  bool process_block;
382 
383  // std::vector<bool> stuffs eight bools to each byte, so access to
384  // them can never be natively atomic.
385  #pragma omp critical(checkProcessBlock)
386  {
387  process_block = !m_blockPositionsWasProcessed[iBlock];
388  m_blockPositionsWasProcessed[iBlock] = true;
389  }
390 
391  if( process_block )
392  {
393  rt_render_trace_block( ptrPBO, iBlock );
394  numBlocksRendered++;
395 
396 
397  // Check if it spend already some time render and request to exit
398  // to display the progress
399  #ifdef _OPENMP
400  if( omp_get_thread_num() == 0 )
401  #endif
402  if( (GetRunningMicroSecs() - startTime) > 150000 )
403  {
404  breakLoop = true;
405  #pragma omp flush(breakLoop)
406  }
407  }
408  }
409  }
410 
411  m_nrBlocksRenderProgress += numBlocksRendered;
412 
413  if( aStatusTextReporter )
414  aStatusTextReporter->Report( wxString::Format( _( "Rendering: %.0f %%" ),
415  (float)(m_nrBlocksRenderProgress * 100) /
416  (float)nrBlocks ) );
417 
418  // Check if it finish the rendering and if should continue to a post processing
419  // or mark it as finished
420  if( m_nrBlocksRenderProgress >= nrBlocks )
421  {
424  else
425  {
427  }
428  }
429 }
std::vector< bool > m_blockPositionsWasProcessed
this flags if a position was already processed (cleared each new render)
long m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void rt_render_trace_block(GLubyte *ptrPBO, signed int iBlock)
void C3D_RENDER_RAYTRACING::rt_shades_packet ( const SFVEC3F bgColorY,
const RAY aRayPkt,
HITINFO_PACKET aHitPacket,
bool  is_testShadow,
SFVEC3F aOutHitColor 
)
private

Definition at line 505 of file c3d_render_raytracing.cpp.

References RAYPACKET_DIM, and shadeHit().

Referenced by rt_render_trace_block().

510 {
511  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
512  {
513  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
514  {
515  if( aHitPacket[i].m_hitresult == true )
516  {
517  aOutHitColor[i] = shadeHit( bgColorY[y],
518  aRayPkt[i],
519  aHitPacket[i].m_HitInfo,
520  false,
521  0,
522  is_testShadow );
523  }
524  else
525  {
526  aOutHitColor[i] = bgColorY[y];
527  }
528  }
529  }
530 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
void C3D_RENDER_RAYTRACING::rt_trace_AA_packet ( const SFVEC3F aBgColorY,
const HITINFO_PACKET aHitPck_X0Y0,
const HITINFO_PACKET aHitPck_AA_X1Y1,
const RAY aRayPck,
SFVEC3F aOutHitColor 
)
private

Definition at line 533 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_SHADOWS, CINFO3D_VISU::GetFlag(), CGENERICACCELERATOR::Intersect(), HITINFO::m_acc_node_info, m_accelerator, HITINFO_PACKET::m_HitInfo, C3D_RENDER_BASE::m_settings, HITINFO::m_tHit, RAYPACKET_DIM, and shadeHit().

Referenced by rt_render_trace_block().

538 {
539  const bool is_testShadow = m_settings.GetFlag( FL_RENDER_RAYTRACING_SHADOWS );
540 
541  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
542  {
543  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
544  {
545  const RAY &rayAA = aRayPck[i];
546 
547  HITINFO hitAA;
548  hitAA.m_tHit = std::numeric_limits<float>::infinity();
549  hitAA.m_acc_node_info = 0;
550 
551  bool hitted = false;
552 
553  const unsigned int idx0y1 = ( x + 0 ) + RAYPACKET_DIM * ( y + 1 );
554  const unsigned int idx1y1 = ( x + 1 ) + RAYPACKET_DIM * ( y + 1 );
555 
556  // Gets the node info from the hit.
557  const unsigned int nodex0y0 = aHitPck_X0Y0[ i ].m_HitInfo.m_acc_node_info;
558  const unsigned int node_AA_x0y0 = aHitPck_AA_X1Y1[ i ].m_HitInfo.m_acc_node_info;
559 
560  unsigned int nodex1y0 = 0;
561 
562  if( x < (RAYPACKET_DIM - 1) )
563  nodex1y0 = aHitPck_X0Y0[ i + 1 ].m_HitInfo.m_acc_node_info;
564 
565  unsigned int nodex0y1 = 0;
566 
567  if( y < (RAYPACKET_DIM - 1) )
568  nodex0y1 = aHitPck_X0Y0[ idx0y1 ].m_HitInfo.m_acc_node_info;
569 
570  unsigned int nodex1y1 = 0;
571 
572  if( ((x < (RAYPACKET_DIM - 1)) &&
573  (y < (RAYPACKET_DIM - 1))) )
574  nodex1y1 = aHitPck_X0Y0[ idx1y1 ].m_HitInfo.m_acc_node_info;
575 
576 
577  if( ((nodex0y0 == nodex1y0) || (nodex1y0 == 0)) && // If all notes are equal we assume there was no change on the object hits
578  ((nodex0y0 == nodex0y1) || (nodex0y1 == 0)) &&
579  ((nodex0y0 == nodex1y1) || (nodex1y1 == 0)) &&
580  (nodex0y0 == node_AA_x0y0) )
581  {
582  // Option 1
583  // This option will give a very good quality on reflections (slow)
584  /*
585  if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
586  {
587  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
588  }
589  else
590  {
591  if( m_accelerator->Intersect( rayAA, hitAA ) )
592  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
593  else
594  aOutHitColor[i] += hitColor[i];
595  }
596  */
597 
598  // Option 2
599  // Trace again with the same node,
600  // then if miss just give the same color as before
601  //if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
602  // aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
603 
604  // Option 3
605  // Use same color
606 
607  }
608  else
609  {
610  // Try to intersect the different nodes
611  // It tests the possible combination of hitted or not hitted points
612  // This will try to get the best hit for this ray
613 
614  if( nodex0y0 != 0 )
615  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y0 );
616 
617  if( ( nodex1y0 != 0 ) &&
618  ( nodex0y0 != nodex1y0 ) )
619  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y0 );
620 
621  if( ( nodex0y1 != 0 ) &&
622  ( nodex0y0 != nodex0y1 ) &&
623  ( nodex1y0 != nodex0y1 ) )
624  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y1 );
625 
626  if( (nodex1y1 != 0 ) &&
627  ( nodex0y0 != nodex1y1 ) &&
628  ( nodex0y1 != nodex1y1 ) &&
629  ( nodex1y0 != nodex1y1 ) )
630  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y1 );
631 
632  if( (node_AA_x0y0 != 0 ) &&
633  ( nodex0y0 != node_AA_x0y0 ) &&
634  ( nodex0y1 != node_AA_x0y0 ) &&
635  ( nodex1y0 != node_AA_x0y0 ) &&
636  ( nodex1y1 != node_AA_x0y0 ) )
637  hitted |= m_accelerator->Intersect( rayAA, hitAA, node_AA_x0y0 );
638 
639  if( hitted )
640  {
641  // If we got any result, shade it
642  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
643  }
644  else
645  {
646  // Note: There are very few cases that will end on this situation
647  // so it is not so expensive to trace a single ray from the beginning
648 
649  // It was missed the 'last nodes' so, trace a ray from the beginning
650  if( m_accelerator->Intersect( rayAA, hitAA ) )
651  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
652  }
653  }
654  }
655  }
656 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
Definition: ray.h:43
CINFO3D_VISU & m_settings
settings refrence in use for this render
float m_tHit
( 4) distance
Definition: hitinfo.h:43
CGENERICACCELERATOR * m_accelerator
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
HITINFO m_HitInfo
Definition: hitinfo.h:63
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
unsigned int m_acc_node_info
( 4) The acc stores here the node that it hits
Definition: hitinfo.h:47
void C3D_RENDER_RAYTRACING::SetCurWindowSize ( const wxSize &  aSize)
overridevirtual

SetCurWindowSize - Before each render, the canvas will tell the render what is the size of its windows, so render can take actions if it changed.

Parameters
aSizethe current size of the render window

Implements C3D_RENDER_BASE.

Definition at line 114 of file c3d_render_raytracing.cpp.

References initializeNewWindowSize(), and C3D_RENDER_BASE::m_windowSize.

115 {
116  if( m_windowSize != aSize )
117  {
118  m_windowSize = aSize;
119  glViewport( 0, 0, m_windowSize.x, m_windowSize.y );
120 
122  }
123 }
wxSize m_windowSize
The window size that this camera is working.
void C3D_RENDER_RAYTRACING::setupMaterials ( )
private

Definition at line 56 of file c3d_render_createscene.cpp.

References CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), FL_RENDER_RAYTRACING_PROCEDURAL_TEXTURES, CINFO3D_VISU::GetFlag(), CINFO3D_VISU::m_BgColorTop, m_board_normal_perturbator, m_brushed_metal_normal_perturbator, m_copper_normal_perturbator, CINFO3D_VISU::m_CopperColor, m_materials, m_plastic_normal_perturbator, m_plastic_shine_normal_perturbator, C3D_RENDER_BASE::m_settings, CINFO3D_VISU::m_SilkScreenColor, m_solder_mask_normal_perturbator, CINFO3D_VISU::m_SolderMaskColor, and CINFO3D_VISU::m_SolderPasteColor.

Referenced by reload().

57 {
58 
60  {
62 
65 
67 
69 
71 
73  }
74 
75  // http://devernay.free.fr/cours/opengl/materials.html
76 
77  // Copper
80  (SFVEC3F)(0.18f), // ambient
81  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
82  glm::clamp( ((SFVEC3F)(1.0f) -
84  SFVEC3F( 0.0f ),
85  SFVEC3F( 0.35f ) ), // specular
86  0.4f * 128.0f, // shiness
87  0.0f, // transparency
88  0.0f );
89 
91  m_materials.m_Copper.SetNormalPerturbator( &m_copper_normal_perturbator );
92 
96  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
99  0.10f * 128.0f, // shiness
100  0.0f, // transparency
101  0.0f );
102 
104  ConvertSRGBToLinear( SFVEC3F( 0.11f ) ),// ambient
105  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
106  glm::clamp( ((SFVEC3F)(1.0f) -
108  SFVEC3F( 0.0f ),
109  SFVEC3F( 0.10f ) ), // specular
110  0.078125f * 128.0f, // shiness
111  0.0f, // transparency
112  0.0f );
113 
114  const float solderMask_gray = ( m_settings.m_SolderMaskColor.r +
116  m_settings.m_SolderMaskColor.b ) / 3.0f;
117 
118  const float solderMask_transparency = solderMask_gray * 0.40f + 0.005f;
119 
120  m_materials.m_SolderMask = CBLINN_PHONG_MATERIAL(
122  0.10f, // ambient
123  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
124  glm::clamp( ( (SFVEC3F)( 1.0f ) -
126  SFVEC3F( 0.0f ),
127  SFVEC3F( solderMask_gray * 2.0f ) ), // specular
128  0.85f * 128.0f, // shiness
129  solderMask_transparency, // transparency
130  0.16f ); // reflection
131 
132  m_materials.m_SolderMask.SetCastShadows( true );
133  m_materials.m_SolderMask.SetNrRefractionsSamples( 1 );
134  m_materials.m_SolderMask.SetNrReflectionsSamples( 2 );
135 
137  m_materials.m_SolderMask.SetNormalPerturbator( &m_solder_mask_normal_perturbator );
138 
139  m_materials.m_EpoxyBoard = CBLINN_PHONG_MATERIAL(
140  ConvertSRGBToLinear( SFVEC3F( 16.0f / 255.0f,
141  14.0f / 255.0f,
142  10.0f / 255.0f ) ), // ambient
143  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
144  ConvertSRGBToLinear( SFVEC3F( 10.0f / 255.0f,
145  8.0f / 255.0f,
146  10.0f / 255.0f ) ), // specular
147  0.1f * 128.0f, // shiness
148  0.10f, // transparency
149  0.0f ); // reflection
150 
151  m_materials.m_EpoxyBoard.SetAbsorvance( 10.0f );
152  m_materials.m_EpoxyBoard.SetNrRefractionsSamples( 3 );
153 
155  m_materials.m_EpoxyBoard.SetNormalPerturbator( &m_board_normal_perturbator );
156 
158  //SFVEC3F bgBot = (SFVEC3F)m_settings.m_BgColorBot;
159 
161  bgTop * 0.125f, // ambient
162  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
163  (SFVEC3F(1.0f) - bgTop) / 3.0f, // specular
164  0.10f * 128.0f, // shiness
165  0.0f, // transparency
166  0.50f ); // reflection
167 }
struct C3D_RENDER_RAYTRACING::@33 m_materials
CPLASTICNORMAL m_plastic_normal_perturbator
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
CBOARDNORMAL m_board_normal_perturbator
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
CCOPPERNORMAL m_copper_normal_perturbator
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
Blinn Phong based material https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model.
Definition: cmaterial.h:248
SFVEC3D m_SolderPasteColor
in realistic mode: solder paste color
Definition: cinfo3d_visu.h:507
SFVEC3D m_SolderMaskColor
in realistic mode: solder mask color
Definition: cinfo3d_visu.h:506
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
SFVEC3D m_SilkScreenColor
in realistic mode: SilkScreen color
Definition: cinfo3d_visu.h:508
CSOLDERMASKNORMAL m_solder_mask_normal_perturbator
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
SFVEC3F C3D_RENDER_RAYTRACING::shadeHit ( const SFVEC3F aBgColor,
const RAY aRay,
HITINFO aHitInfo,
bool  aIsInsideObject,
unsigned int  aRecursiveLevel,
bool  is_testShadow 
) const
private

Definition at line 1705 of file c3d_render_raytracing.cpp.

References RAY::at(), FL_RENDER_RAYTRACING_ANTI_ALIASING, FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_REFLECTIONS, FL_RENDER_RAYTRACING_REFRACTIONS, CMATERIAL::GetAbsorvance(), CMATERIAL::GetAmbientColor(), CLIGHT::GetCastShadows(), COBJECT::GetDiffuseColor(), CMATERIAL::GetEmissiveColor(), CINFO3D_VISU::GetFlag(), CLIGHT::GetLightParameters(), CLIGHTCONTAINER::GetList(), COBJECT::GetMaterial(), CINFO3D_VISU::GetNonCopperLayerThickness3DU(), CMATERIAL::GetNrReflectionsSamples(), CMATERIAL::GetNrRefractionsSamples(), CMATERIAL::GetReflection(), CMATERIAL::GetSpecularColor(), CMATERIAL::GetTransparency(), RAY::Init(), CGENERICACCELERATOR::Intersect(), CGENERICACCELERATOR::IntersectP(), m_accelerator, RAY::m_Dir, HITINFO::m_HitNormal, HITINFO::m_HitPoint, m_isPreview, m_lights, C3D_RENDER_BASE::m_settings, HITINFO::m_ShadowFactor, HITINFO::m_tHit, max, min, NextFloatUp(), HITINFO::pHitObject, Refract(), CMATERIAL::Shade(), and UniformRandomHemisphereDirection().

Referenced by render_preview(), rt_shades_packet(), and rt_trace_AA_packet().

1711 {
1712  if( aRecursiveLevel > 2 )
1713  return SFVEC3F( 0.0f );
1714 
1715  SFVEC3F hitPoint = aHitInfo.m_HitPoint;
1716 
1717  if( !m_isPreview )
1718  hitPoint += aHitInfo.m_HitNormal * m_settings.GetNonCopperLayerThickness3DU() * 1.0f;
1719 
1720  const CMATERIAL *objMaterial = aHitInfo.pHitObject->GetMaterial();
1721  wxASSERT( objMaterial != NULL );
1722 
1723  const SFVEC3F diffuseColorObj = aHitInfo.pHitObject->GetDiffuseColor( aHitInfo );
1724 
1725  SFVEC3F outColor = objMaterial->GetEmissiveColor();
1726 
1727  const LIST_LIGHT &lightList = m_lights.GetList();
1728 
1729 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1730  const bool is_aa_enabled = m_settings.GetFlag( FL_RENDER_RAYTRACING_ANTI_ALIASING ) &&
1731  (!m_isPreview);
1732 #endif
1733 
1734  float shadow_att_factor_sum = 0.0f;
1735 
1736  unsigned int nr_lights_that_can_cast_shadows = 0;
1737 
1738  for( LIST_LIGHT::const_iterator ii = lightList.begin();
1739  ii != lightList.end();
1740  ++ii )
1741  {
1742  const CLIGHT *light = (CLIGHT *)*ii;
1743 
1744  SFVEC3F vectorToLight;
1745  SFVEC3F colorOfLight;
1746  float distToLight;
1747 
1748  light->GetLightParameters( hitPoint, vectorToLight, colorOfLight, distToLight );
1749 
1750  if( m_isPreview )
1751  colorOfLight = SFVEC3F( 1.0f );
1752 
1753  /*
1754  if( (!m_isPreview) &&
1755  // Little hack to make randomness to the shading and shadows
1756  m_settings.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) )
1757  vectorToLight = glm::normalize( vectorToLight +
1758  UniformRandomHemisphereDirection() * 0.1f );
1759  */
1760 
1761  const float NdotL = glm::dot( aHitInfo.m_HitNormal, vectorToLight );
1762 
1763  // Only calc shade if the normal is facing the direction of light,
1764  // otherwise it is in the shadow
1765  if( NdotL >= FLT_EPSILON )
1766  {
1767  float shadow_att_factor_light = 1.0f;
1768 
1769  if( is_testShadow && light->GetCastShadows() )
1770  {
1771  nr_lights_that_can_cast_shadows++;
1772 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1773  if( (!is_aa_enabled) ||
1774 
1775  // For rays that are recursive, just calculate one hit shadow
1776  (aRecursiveLevel > 0) ||
1777 
1778  // Only use soft shadows if using post processing
1780  )
1781  {
1782 #endif
1783  RAY rayToLight;
1784  rayToLight.Init( hitPoint, vectorToLight );
1785 
1786  // Test if point is not in the shadow.
1787  // Test for any hit from the point in the direction of light
1788  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1789  shadow_att_factor_light = 0.0f;
1790 
1791 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1792  }
1793 
1794  // Experimental softshadow calculation
1795  else
1796  {
1797 
1798  const unsigned int shadow_number_of_samples = 3;
1799  const float shadow_inc_factor = 1.0f / (float)(shadow_number_of_samples);
1800 
1801  for( unsigned int i = 0; i < shadow_number_of_samples; ++i )
1802  {
1803  const SFVEC3F unifVector = UniformRandomHemisphereDirection();
1804  const SFVEC3F disturbed_vector_to_light = glm::normalize( vectorToLight +
1805  unifVector *
1806  0.05f );
1807 
1808  RAY rayToLight;
1809  rayToLight.Init( hitPoint, disturbed_vector_to_light );
1810 
1811  // !TODO: there are multiple ways that this tests can be
1812  // optimized. Eg: by packing rays or to test against the
1813  // latest hit object.
1814 
1815  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1816  {
1817  shadow_att_factor_light -= shadow_inc_factor;
1818  }
1819  }
1820  }
1821 #endif
1822  shadow_att_factor_sum += shadow_att_factor_light;
1823  }
1824 
1826  {
1827  outColor += objMaterial->Shade( aRay,
1828  aHitInfo,
1829  NdotL,
1830  diffuseColorObj,
1831  vectorToLight,
1832  colorOfLight,
1833  shadow_att_factor_light );
1834  }
1835  else
1836  {
1837  // This is a render hack in order to compensate for the lack of
1838  // ambient and too much darkness when using post process shader
1839  // It will calculate as it was not in shadow
1840  outColor += objMaterial->Shade( aRay,
1841  aHitInfo,
1842  NdotL,
1843  diffuseColorObj,
1844  vectorToLight,
1845  colorOfLight,
1846  // The sampled point will be darkshaded by the post
1847  // processing, so here it compensates to not shadow
1848  // so much
1849  glm::min( shadow_att_factor_light + (3.0f / 6.0f), 1.0f )
1850  );
1851  }
1852  }
1853  else
1854  {
1855  outColor += objMaterial->GetAmbientColor();
1856  }
1857 
1858  // Only use the headlight for preview
1859  if( m_isPreview )
1860  break;
1861  }
1862 
1863  // Improvement: this is not taking in account the lightcolor
1864  if( nr_lights_that_can_cast_shadows > 0 )
1865  {
1866  aHitInfo.m_ShadowFactor = glm::max( shadow_att_factor_sum /
1867  (float)(nr_lights_that_can_cast_shadows * 1.0f), 0.0f );
1868  }
1869  else
1870  {
1871  aHitInfo.m_ShadowFactor = 1.0f;
1872  }
1873 
1874  // Clamp color to not be brighter than 1.0f
1875  outColor = glm::min( outColor, SFVEC3F( 1.0f ) );
1876 
1877  if( !m_isPreview )
1878  {
1879  // Reflections
1880  // /////////////////////////////////////////////////////////////////////
1881 
1882  if( !aIsInsideObject &&
1883  (objMaterial->GetReflection() > 0.0f) &&
1885  {
1886  const unsigned int reflection_number_of_samples = objMaterial->GetNrReflectionsSamples();
1887 
1888  SFVEC3F sum_color = SFVEC3F(0.0f);
1889 
1890  const SFVEC3F reflectVector = aRay.m_Dir -
1891  2.0f * glm::dot( aRay.m_Dir, aHitInfo.m_HitNormal ) *
1892  aHitInfo.m_HitNormal;
1893 
1894  for( unsigned int i = 0; i < reflection_number_of_samples; ++i )
1895  {
1896  // Apply some randomize to the reflected vector
1897  const SFVEC3F random_reflectVector =
1898  glm::normalize( reflectVector +
1900  0.025f );
1901 
1902  RAY reflectedRay;
1903  reflectedRay.Init( hitPoint, random_reflectVector );
1904 
1905  HITINFO reflectedHit;
1906  reflectedHit.m_tHit = std::numeric_limits<float>::infinity();
1907 
1908  if( m_accelerator->Intersect( reflectedRay, reflectedHit ) )
1909  {
1910  sum_color += ( diffuseColorObj + objMaterial->GetSpecularColor() ) *
1911  shadeHit( aBgColor,
1912  reflectedRay,
1913  reflectedHit,
1914  false,
1915  aRecursiveLevel + 1,
1916  is_testShadow ) *
1917  SFVEC3F( objMaterial->GetReflection() *
1918  // Falloff factor
1919  (1.0f / ( 1.0f + 0.75f * reflectedHit.m_tHit *
1920  reflectedHit.m_tHit) ) );
1921  }
1922  }
1923 
1924  outColor += (sum_color / SFVEC3F( (float)reflection_number_of_samples) );
1925  }
1926 
1927 
1928  // Refractions
1929  // /////////////////////////////////////////////////////////////////////
1930 
1931  if( (objMaterial->GetTransparency() > 0.0f) &&
1933  {
1934  const float airIndex = 1.000293f;
1935  const float glassIndex = 1.49f;
1936  const float air_over_glass = airIndex / glassIndex;
1937  const float glass_over_air = glassIndex / airIndex;
1938 
1939  const float refractionRatio = aIsInsideObject?glass_over_air:air_over_glass;
1940 
1941  SFVEC3F refractedVector;
1942 
1943  if( Refract( aRay.m_Dir,
1944  aHitInfo.m_HitNormal,
1945  refractionRatio,
1946  refractedVector ) )
1947  {
1948  const float objTransparency = objMaterial->GetTransparency();
1949 
1950  // This increase the start point by a "fixed" factor so it will work the
1951  // same for all distances
1952  const SFVEC3F startPoint = aRay.at( NextFloatUp(
1953  NextFloatUp(
1954  NextFloatUp( aHitInfo.m_tHit ) ) ) );
1955 
1956  const unsigned int refractions_number_of_samples = objMaterial->GetNrRefractionsSamples();
1957 
1958  SFVEC3F sum_color = SFVEC3F(0.0f);
1959 
1960  for( unsigned int i = 0; i < refractions_number_of_samples; ++i )
1961  {
1962  RAY refractedRay;
1963 
1964  if( refractions_number_of_samples > 1 )
1965  {
1966  // apply some randomize to the refracted vector
1967  const SFVEC3F randomizeRefractedVector = glm::normalize( refractedVector +
1969  0.15f *
1970  (1.0f - objTransparency) );
1971 
1972  refractedRay.Init( startPoint, randomizeRefractedVector );
1973  }
1974  else
1975  {
1976  refractedRay.Init( startPoint, refractedVector );
1977  }
1978 
1979  HITINFO refractedHit;
1980  refractedHit.m_tHit = std::numeric_limits<float>::infinity();
1981 
1982  SFVEC3F refractedColor = objMaterial->GetAmbientColor();
1983 
1984  if( m_accelerator->Intersect( refractedRay, refractedHit ) )
1985  {
1986  refractedColor = shadeHit( aBgColor,
1987  refractedRay,
1988  refractedHit,
1989  true,
1990  aRecursiveLevel + 1,
1991  false );
1992 
1993  const SFVEC3F absorbance = ( SFVEC3F(1.0f) - diffuseColorObj ) *
1994  (1.0f - objTransparency ) *
1995  objMaterial->GetAbsorvance() * // Adjust falloff factor
1996  -refractedHit.m_tHit;
1997 
1998  const SFVEC3F transparency = SFVEC3F( expf( absorbance.r ),
1999  expf( absorbance.g ),
2000  expf( absorbance.b ) );
2001 
2002  sum_color += refractedColor * transparency * objTransparency;
2003  }
2004  else
2005  {
2006  sum_color += refractedColor * objTransparency;
2007  }
2008  }
2009 
2010  outColor = outColor * (1.0f - objTransparency) +
2011  (sum_color / SFVEC3F( (float)refractions_number_of_samples) );
2012  }
2013  }
2014  }
2015 
2016  //outColor += glm::max( -glm::dot( aHitInfo.m_HitNormal, aRay.m_Dir ), 0.0f ) *
2017  // objMaterial->GetAmbientColor();
2018 
2019  return outColor;
2020 }
float m_ShadowFactor
( 4) Shadow attenuation (1.0 no shadow, 0.0f darkness)
Definition: hitinfo.h:50
float GetTransparency() const
Definition: cmaterial.h:183
const LIST_LIGHT & GetList() const
GetList - get light list of this container.
Definition: clight.h:196
const SFVEC3F & GetAmbientColor() const
Definition: cmaterial.h:178
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
void Init(const SFVEC3F &o, const SFVEC3F &d)
Definition: ray.cpp:38
virtual bool IntersectP(const RAY &aRay, float aMaxDistance) const =0
float GetAbsorvance() const
Definition: cmaterial.h:185
float GetNonCopperLayerThickness3DU() const
GetNonCopperLayerThickness3DU - Get the current non copper layers thickness.
Definition: cinfo3d_visu.h:159
SFVEC3F at(float t) const
Definition: ray.h:65
const CMATERIAL * GetMaterial() const
Definition: cobject.h:63
const SFVEC3F & GetSpecularColor() const
Definition: cmaterial.h:180
Definition: ray.h:43
CINFO3D_VISU & m_settings
settings refrence in use for this render
float m_tHit
( 4) distance
Definition: hitinfo.h:43
bool Refract(const SFVEC3F &aInVector, const SFVEC3F &aNormal, float aRin_over_Rout, SFVEC3F &aOutVector)
Refract Based on: https://github.com/mmp/pbrt-v3/blob/master/src/core/reflection.h See also: http://w...
Definition: 3d_math.h:113
virtual SFVEC3F Shade(const RAY &aRay, const HITINFO &aHitInfo, float NdotL, const SFVEC3F &aDiffuseObjColor, const SFVEC3F &aDirToLight, const SFVEC3F &aLightColor, float aShadowAttenuationFactor) const =0
Shade - Shades an intersection point.
SFVEC3F m_HitPoint
(12) hit position
Definition: hitinfo.h:49
CGENERICACCELERATOR * m_accelerator
unsigned int GetNrReflectionsSamples() const
Definition: cmaterial.h:187
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
unsigned int GetNrRefractionsSamples() const
Definition: cmaterial.h:186
const COBJECT * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:45
A base light class to derive to implement other light classes.
Definition: clight.h:37
SFVEC3F m_Dir
Definition: ray.h:48
SFVEC3F UniformRandomHemisphereDirection()
Definition: 3d_math.h:54
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
bool GetCastShadows() const
Definition: clight.h:58
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
#define max(a, b)
Definition: auxiliary.h:86
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
float NextFloatUp(float v)
Definition: 3d_fastmath.h:136
virtual void GetLightParameters(const SFVEC3F &aHitPoint, SFVEC3F &aOutVectorToLight, SFVEC3F &aOutLightColor, float &aOutDistance) const =0
GetLightParameters - Get parameters from this light.
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:42
std::list< CLIGHT * > LIST_LIGHT
Definition: clight.h:151
const SFVEC3F & GetEmissiveColor() const
Definition: cmaterial.h:179
virtual SFVEC3F GetDiffuseColor(const HITINFO &aHitInfo) const =0
float GetReflection() const
Definition: cmaterial.h:184
#define min(a, b)
Definition: auxiliary.h:85

Member Data Documentation

SFVEC3F C3D_RENDER_RAYTRACING::m_BgColorBot_LinearRGB
private

Definition at line 157 of file c3d_render_raytracing.h.

Referenced by render(), and rt_render_trace_block().

SFVEC3F C3D_RENDER_RAYTRACING::m_BgColorTop_LinearRGB
private

Definition at line 156 of file c3d_render_raytracing.h.

Referenced by render(), and rt_render_trace_block().

std::vector< SFVEC2UI > C3D_RENDER_RAYTRACING::m_blockPositions
private

this encodes the Morton code positions

Definition at line 165 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions(), restart_render_state(), rt_render_trace_block(), and rt_render_tracing().

std::vector< SFVEC2UI > C3D_RENDER_RAYTRACING::m_blockPositionsFast
private

this encodes the Morton code positions (on fast preview mode)

Definition at line 171 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions(), and render_preview().

std::vector< bool > C3D_RENDER_RAYTRACING::m_blockPositionsWasProcessed
private

this flags if a position was already processed (cleared each new render)

Definition at line 168 of file c3d_render_raytracing.h.

Referenced by restart_render_state(), and rt_render_tracing().

CBOARDNORMAL C3D_RENDER_RAYTRACING::m_board_normal_perturbator
private

Definition at line 111 of file c3d_render_raytracing.h.

Referenced by setupMaterials().

CMETALBRUSHEDNORMAL C3D_RENDER_RAYTRACING::m_brushed_metal_normal_perturbator
private

Definition at line 116 of file c3d_render_raytracing.h.

Referenced by add_3D_models(), and setupMaterials().

CDIRECTIONALLIGHT* C3D_RENDER_RAYTRACING::m_camera_light
private

Definition at line 140 of file c3d_render_raytracing.h.

Referenced by C3D_RENDER_RAYTRACING(), Redraw(), reload(), and render().

CCONTAINER2D C3D_RENDER_RAYTRACING::m_containerWithObjectsToDelete
private

This will store the list of created objects special for RT, that will be clear in the end.

Definition at line 150 of file c3d_render_raytracing.h.

Referenced by insert3DPadHole(), insert3DViaHole(), and reload().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_Copper

Definition at line 107 of file c3d_render_raytracing.h.

CCOPPERNORMAL C3D_RENDER_RAYTRACING::m_copper_normal_perturbator
private

Definition at line 112 of file c3d_render_raytracing.h.

Referenced by setupMaterials().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_EpoxyBoard

Definition at line 106 of file c3d_render_raytracing.h.

SFVEC2UI C3D_RENDER_RAYTRACING::m_fastPreviewModeSize
private

Definition at line 174 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions().

HITINFO_PACKET* C3D_RENDER_RAYTRACING::m_firstHitinfo
private

Definition at line 176 of file c3d_render_raytracing.h.

Referenced by C3D_RENDER_RAYTRACING().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_Floor

Definition at line 108 of file c3d_render_raytracing.h.

bool C3D_RENDER_BASE::m_is_opengl_initialized
protectedinherited

flag if the opengl specific for this render was already initialized

Definition at line 97 of file c3d_render_base.h.

Referenced by C3D_RENDER_BASE::C3D_RENDER_BASE(), initializeOpenGL(), C3D_RENDER_OGL_LEGACY::initializeOpenGL(), Redraw(), and C3D_RENDER_OGL_LEGACY::Redraw().

bool C3D_RENDER_RAYTRACING::m_isPreview
private