KiCad PCB EDA Suite
C3D_RENDER_RAYTRACING Class Reference

#include <c3d_render_raytracing.h>

Inheritance diagram for C3D_RENDER_RAYTRACING:
C3D_RENDER_BASE

Public Member Functions

 C3D_RENDER_RAYTRACING (CINFO3D_VISU &aSettings)
 
 ~C3D_RENDER_RAYTRACING ()
 
void SetCurWindowSize (const wxSize &aSize) override
 SetCurWindowSize - Before each render, the canvas will tell the render what is the size of its windows, so render can take actions if it changed. More...
 
bool Redraw (bool aIsMoving, REPORTER *aStatusTextReporter) override
 Redraw - Ask to redraw the view. More...
 
int GetWaitForEditingTimeOut () override
 GetWaitForEditingTimeOut - Give the interface the time (in ms) that it should wait for editing or movements before (this works for display preview mode) More...
 
void ReloadRequest ()
 ReloadRequest - !TODO: this must be reviewed to add flags to improve specific render. More...
 
bool IsReloadRequestPending () const
 IsReloadRequestPending - Query if there is a pending reload request. More...
 

Protected Attributes

CINFO3D_VISUm_settings
 settings refrence in use for this render More...
 
bool m_is_opengl_initialized
 flag if the opengl specific for this render was already initialized More...
 
bool m_reloadRequested
 !TODO: this must be reviewed in order to flag change types More...
 
wxSize m_windowSize
 The window size that this camera is working. More...
 

Static Protected Attributes

static const wxChar * m_logTrace = wxT( "KI_TRACE_3D_RENDER" )
 Trace mask used to enable or disable the trace output of this class. More...
 

Private Member Functions

bool initializeOpenGL ()
 
void initializeNewWindowSize ()
 
void opengl_init_pbo ()
 
void opengl_delete_pbo ()
 
void reload (REPORTER *aStatusTextReporter)
 
void restart_render_state ()
 
void rt_render_tracing (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_post_process_shade (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_post_process_blur_finish (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void rt_render_trace_block (GLubyte *ptrPBO, signed int iBlock)
 
void rt_final_color (GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
 
void rt_shades_packet (const SFVEC3F *bgColorY, const RAY *aRayPkt, HITINFO_PACKET *aHitPacket, bool is_testShadow, SFVEC3F *aOutHitColor)
 
void rt_trace_AA_packet (const SFVEC3F *aBgColorY, const HITINFO_PACKET *aHitPck_X0Y0, const HITINFO_PACKET *aHitPck_AA_X1Y1, const RAY *aRayPck, SFVEC3F *aOutHitColor)
 
void setupMaterials ()
 
SFVEC3F shadeHit (const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
 
void create_3d_object_from (CCONTAINER &aDstContainer, const COBJECT2D *aObject2D, float aZMin, float aZMax, const CMATERIAL *aMaterial, const SFVEC3F &aObjColor)
 Function create_3d_object_from. More...
 
void add_3D_vias_and_pads_to_container ()
 
void insert3DViaHole (const VIA *aVia)
 
void insert3DPadHole (const D_PAD *aPad)
 
void load_3D_models ()
 
void add_3D_models (const S3DMODEL *a3DModel, const glm::mat4 &aModelMatrix)
 
void initialize_block_positions ()
 
void render (GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
 
void render_preview (GLubyte *ptrPBO)
 

Private Attributes

struct {
   CBLINN_PHONG_MATERIAL   m_Paste
 
   CBLINN_PHONG_MATERIAL   m_SilkS
 
   CBLINN_PHONG_MATERIAL   m_SolderMask
 
   CBLINN_PHONG_MATERIAL   m_EpoxyBoard
 
   CBLINN_PHONG_MATERIAL   m_Copper
 
   CBLINN_PHONG_MATERIAL   m_Floor
 
m_materials
 
CBOARDNORMAL m_board_normal_perturbator
 
CCOPPERNORMAL m_copper_normal_perturbator
 
CSOLDERMASKNORMAL m_solder_mask_normal_perturbator
 
CPLASTICNORMAL m_plastic_normal_perturbator
 
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
 
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
 
bool m_isPreview
 
RT_RENDER_STATE m_rt_render_state
 State used on quality render. More...
 
unsigned long int m_stats_start_rendering_time
 Time that the render starts. More...
 
long m_nrBlocksRenderProgress
 Save the number of blocks progress of the render. More...
 
CPOSTSHADER_SSAO m_postshader_ssao
 
CLIGHTCONTAINER m_lights
 
CDIRECTIONALLIGHTm_camera_light
 
bool m_opengl_support_vertex_buffer_object
 
GLuint m_pboId
 
GLuint m_pboDataSize
 
CCONTAINER m_object_container
 
CCONTAINER2D m_containerWithObjectsToDelete
 This will store the list of created objects special for RT, that will be clear in the end. More...
 
CCONTAINER2Dm_outlineBoard2dObjects
 
CGENERICACCELERATORm_accelerator
 
SFVEC3F m_BgColorTop_LinearRGB
 
SFVEC3F m_BgColorBot_LinearRGB
 
wxSize m_oldWindowsSize
 used to see if the windows size changed More...
 
std::vector< SFVEC2UIm_blockPositions
 this encodes the Morton code positions More...
 
std::vector< bool > m_blockPositionsWasProcessed
 this flags if a position was already processed (cleared each new render) More...
 
std::vector< SFVEC2UIm_blockPositionsFast
 this encodes the Morton code positions (on fast preview mode) More...
 
SFVEC2UI m_realBufferSize
 
SFVEC2UI m_fastPreviewModeSize
 
HITINFO_PACKETm_firstHitinfo
 
SFVEC3Fm_shaderBuffer
 
unsigned int m_xoffset
 
unsigned int m_yoffset
 
unsigned int m_stats_converted_dummy_to_plane
 
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
 
MAP_MODEL_MATERIALS m_model_materials
 Stores materials of the 3D models. More...
 

Detailed Description

Definition at line 59 of file c3d_render_raytracing.h.

Constructor & Destructor Documentation

C3D_RENDER_RAYTRACING::C3D_RENDER_RAYTRACING ( CINFO3D_VISU aSettings)
explicit

Definition at line 49 of file c3d_render_raytracing.cpp.

References m_accelerator, m_camera_light, m_firstHitinfo, m_isPreview, C3D_RENDER_BASE::m_logTrace, m_oldWindowsSize, m_opengl_support_vertex_buffer_object, m_outlineBoard2dObjects, m_pboDataSize, m_pboId, m_rt_render_state, m_shaderBuffer, m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, m_xoffset, m_yoffset, and RT_RENDER_STATE_MAX.

49  :
50  C3D_RENDER_BASE( aSettings ),
51  m_postshader_ssao( aSettings.CameraGet() )
52 {
53  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::C3D_RENDER_RAYTRACING" ) );
54 
56  m_pboId = GL_NONE;
57  m_pboDataSize = 0;
58  m_accelerator = NULL;
61  m_oldWindowsSize.x = 0;
62  m_oldWindowsSize.y = 0;
64  m_firstHitinfo = NULL;
65  m_shaderBuffer = NULL;
66  m_camera_light = NULL;
67 
68  m_xoffset = 0;
69  m_yoffset = 0;
70 
71  m_isPreview = false;
72  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an initial invalid state
73 }
CPOSTSHADER_SSAO m_postshader_ssao
wxSize m_oldWindowsSize
used to see if the windows size changed
HITINFO_PACKET * m_firstHitinfo
unsigned int m_stats_converted_dummy_to_plane
CGENERICACCELERATOR * m_accelerator
C3D_RENDER_BASE(CINFO3D_VISU &aSettings)
RT_RENDER_STATE m_rt_render_state
State used on quality render.
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
CDIRECTIONALLIGHT * m_camera_light
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
CCONTAINER2D * m_outlineBoard2dObjects
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.
C3D_RENDER_RAYTRACING::~C3D_RENDER_RAYTRACING ( )

Definition at line 76 of file c3d_render_raytracing.cpp.

References m_accelerator, C3D_RENDER_BASE::m_logTrace, m_outlineBoard2dObjects, m_shaderBuffer, and opengl_delete_pbo().

77 {
78  wxLogTrace( m_logTrace, wxT( "C3D_RENDER_RAYTRACING::~C3D_RENDER_RAYTRACING" ) );
79 
80  delete m_accelerator;
81  m_accelerator = NULL;
82 
85 
86  delete[] m_shaderBuffer;
87  m_shaderBuffer = NULL;
88 
90 }
CGENERICACCELERATOR * m_accelerator
CCONTAINER2D * m_outlineBoard2dObjects
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.

Member Function Documentation

void C3D_RENDER_RAYTRACING::add_3D_models ( const S3DMODEL a3DModel,
const glm::mat4 &  aModelMatrix 
)
private

Definition at line 1300 of file c3d_render_createscene.cpp.

References abs, CGENERICCONTAINER::Add(), ConvertSRGBToLinear(), FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_PROCEDURAL_TEXTURES, CINFO3D_VISU::GetFlag(), SMATERIAL::m_Ambient, m_brushed_metal_normal_perturbator, SMESH::m_Color, SMATERIAL::m_Diffuse, SMATERIAL::m_Emissive, SMESH::m_FaceIdx, SMESH::m_FaceIdxSize, SMESH::m_MaterialIdx, S3DMODEL::m_Materials, S3DMODEL::m_MaterialsSize, S3DMODEL::m_Meshes, S3DMODEL::m_MeshesSize, m_model_materials, SMESH::m_Normals, m_object_container, m_plastic_normal_perturbator, m_plastic_shine_normal_perturbator, SMESH::m_Positions, C3D_RENDER_BASE::m_settings, SMATERIAL::m_Shininess, SMATERIAL::m_Specular, SMATERIAL::m_Transparency, SMESH::m_VertexSize, MATERIAL_MODE_CAD_MODE, MATERIAL_MODE_NORMAL, MaterialDiffuseToColorCAD(), CINFO3D_VISU::MaterialModeGet(), RGBtoGray(), CTRIANGLE::SetColor(), COBJECT::SetMaterial(), and CMATERIAL::SetNormalPerturbator().

Referenced by load_3D_models().

1302 {
1303 
1304  // Validate a3DModel pointers
1305  wxASSERT( a3DModel != NULL );
1306 
1307  if( a3DModel == NULL )
1308  return;
1309 
1310  wxASSERT( a3DModel->m_Materials != NULL );
1311  wxASSERT( a3DModel->m_Meshes != NULL );
1312  wxASSERT( a3DModel->m_MaterialsSize > 0 );
1313  wxASSERT( a3DModel->m_MeshesSize > 0 );
1314 
1315  if( (a3DModel->m_Materials != NULL) && (a3DModel->m_Meshes != NULL) &&
1316  (a3DModel->m_MaterialsSize > 0) && (a3DModel->m_MeshesSize > 0) )
1317  {
1318 
1319  MODEL_MATERIALS *materialVector;
1320 
1321  // Try find if the materials already exists in the map list
1322  if( m_model_materials.find( a3DModel ) != m_model_materials.end() )
1323  {
1324  // Found it, so get the pointer
1325  materialVector = &m_model_materials[a3DModel];
1326  }
1327  else
1328  {
1329  // Materials was not found in the map, so it will create a new for
1330  // this model.
1331 
1332  m_model_materials[a3DModel] = MODEL_MATERIALS();
1333  materialVector = &m_model_materials[a3DModel];
1334 
1335  materialVector->resize( a3DModel->m_MaterialsSize );
1336 
1337  for( unsigned int imat = 0;
1338  imat < a3DModel->m_MaterialsSize;
1339  ++imat )
1340  {
1342  {
1343  const SMATERIAL &material = a3DModel->m_Materials[imat];
1344 
1345  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJtaW4oc3FydCh4LTAuMzUpKjAuNDAtMC4wNSwxLjApIiwiY29sb3IiOiIjMDAwMDAwIn0seyJ0eXBlIjoxMDAwLCJ3aW5kb3ciOlsiMC4wNzA3NzM2NzMyMzY1OTAxMiIsIjEuNTY5NTcxNjI5MjI1NDY5OCIsIi0wLjI3NDYzNTMyMTc1OTkyOTMiLCIwLjY0NzcwMTg4MTkyNTUzNjIiXSwic2l6ZSI6WzY0NCwzOTRdfV0-
1346 
1347  float reflectionFactor = 0.0f;
1348 
1349  if( (material.m_Shininess - 0.35f) > FLT_EPSILON )
1350  {
1351  reflectionFactor = glm::clamp( glm::sqrt( (material.m_Shininess - 0.35f) ) *
1352  0.40f - 0.05f,
1353  0.0f,
1354  0.5f );
1355  }
1356 
1357  CBLINN_PHONG_MATERIAL &blinnMaterial = (*materialVector)[imat];
1358 
1359  SFVEC3F ambient;
1360 
1362  {
1363  // apply a gain to the (dark) ambient colors
1364 
1365  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMi4wMCkpLTAuMzUiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0xLjI0OTUwNTMzOTIyMzYyIiwiMS42Nzc4MzQ0MTg1NjcxODQzIiwiLTAuNDM1NTA0NjQyODEwOTMwMjYiLCIxLjM2NTkzNTIwODEzNzI1OCJdLCJzaXplIjpbNjQ5LDM5OV19XQ--
1366  // ambient = glm::max( (glm::pow((material.m_Ambient + 0.20f), SFVEC3F(1.0f / 2.00f)) - SFVEC3F(0.35f)), material.m_Ambient );
1367 
1368  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMS41OCkpLTAuMzUiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0xLjI0OTUwNTMzOTIyMzYyIiwiMS42Nzc4MzQ0MTg1NjcxODQzIiwiLTAuNDM1NTA0NjQyODEwOTMwMjYiLCIxLjM2NTkzNTIwODEzNzI1OCJdLCJzaXplIjpbNjQ5LDM5OV19XQ--
1369  //ambient = glm::max( (glm::pow((material.m_Ambient + 0.20f), SFVEC3F(1.0f / 1.58f)) - SFVEC3F(0.35f)), material.m_Ambient );
1370 
1371  // http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiIoKHgrMC4yMCleKDEvMS41NCkpLTAuMzQiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjAsImVxIjoieCIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMCwid2luZG93IjpbIi0yLjcyMTA5NTg0MjA1MDYwNSIsIjEuODUyODcyNTI5NDk3NTIyMyIsIi0xLjQyMTM3NjAxOTkyOTA4MDYiLCIxLjM5MzM3Mzc0NzE3NzQ2MTIiXSwic2l6ZSI6WzY0OSwzOTldfV0-
1372  ambient = ConvertSRGBToLinear(
1373  glm::pow((material.m_Ambient + 0.30f), SFVEC3F(1.0f / 1.54f)) - SFVEC3F(0.34f) );
1374  }
1375  else
1376  {
1377  ambient = ConvertSRGBToLinear( material.m_Ambient );
1378  }
1379 
1380 
1381  blinnMaterial = CBLINN_PHONG_MATERIAL(
1382  ambient,
1383  ConvertSRGBToLinear( material.m_Emissive ),
1384  ConvertSRGBToLinear( material.m_Specular ),
1385  material.m_Shininess * 180.0f,
1386  material.m_Transparency,
1387  reflectionFactor );
1388 
1390  {
1391  // Guess material type and apply a normal perturbator
1392 
1393  if( ( RGBtoGray(material.m_Diffuse) < 0.3f ) &&
1394  ( material.m_Shininess < 0.36f ) &&
1395  ( material.m_Transparency == 0.0f ) &&
1396  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) < 0.15f) &&
1397  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) < 0.15f) &&
1398  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) < 0.15f) ) )
1399  {
1400  // This may be a black plastic..
1401 
1402  if( material.m_Shininess < 0.26f )
1404  else
1406  }
1407  else
1408  {
1409  if( ( RGBtoGray(material.m_Diffuse) > 0.3f ) &&
1410  ( material.m_Shininess < 0.30f ) &&
1411  ( material.m_Transparency == 0.0f ) &&
1412  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) > 0.25f) ||
1413  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) > 0.25f) ||
1414  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) > 0.25f) ) )
1415  {
1416  // This may be a color plastic ...
1418  }
1419  else
1420  {
1421  if( ( RGBtoGray(material.m_Diffuse) > 0.6f ) &&
1422  ( material.m_Shininess > 0.35f ) &&
1423  ( material.m_Transparency == 0.0f ) &&
1424  ( (glm::abs( material.m_Diffuse.r - material.m_Diffuse.g ) < 0.40f) &&
1425  (glm::abs( material.m_Diffuse.b - material.m_Diffuse.g ) < 0.40f) &&
1426  (glm::abs( material.m_Diffuse.r - material.m_Diffuse.b ) < 0.40f) ) )
1427  {
1428  // This may be a brushed metal
1430  }
1431  }
1432  }
1433  }
1434  }
1435  else
1436  {
1437  (*materialVector)[imat] = CBLINN_PHONG_MATERIAL( SFVEC3F( 0.2f ),
1438  SFVEC3F( 0.0f ),
1439  SFVEC3F( 0.0f ),
1440  0.0f,
1441  0.0f,
1442  0.0f );
1443  }
1444  }
1445  }
1446 
1447  const glm::mat3 normalMatrix = glm::transpose( glm::inverse( glm::mat3( aModelMatrix ) ) );
1448 
1449  for( unsigned int mesh_i = 0;
1450  mesh_i < a3DModel->m_MeshesSize;
1451  ++mesh_i )
1452  {
1453  const SMESH &mesh = a3DModel->m_Meshes[mesh_i];
1454 
1455  // Validate the mesh pointers
1456  wxASSERT( mesh.m_Positions != NULL );
1457  wxASSERT( mesh.m_FaceIdx != NULL );
1458  wxASSERT( mesh.m_Normals != NULL );
1459  wxASSERT( mesh.m_FaceIdxSize > 0 );
1460  wxASSERT( (mesh.m_FaceIdxSize % 3) == 0 );
1461 
1462 
1463  if( (mesh.m_Positions != NULL) &&
1464  (mesh.m_Normals != NULL) &&
1465  (mesh.m_FaceIdx != NULL) &&
1466  (mesh.m_FaceIdxSize > 0) &&
1467  (mesh.m_VertexSize > 0) &&
1468  ((mesh.m_FaceIdxSize % 3) == 0) &&
1469  (mesh.m_MaterialIdx < a3DModel->m_MaterialsSize) )
1470  {
1471  const CBLINN_PHONG_MATERIAL &blinn_material = (*materialVector)[mesh.m_MaterialIdx];
1472 
1473  // Add all face triangles
1474  for( unsigned int faceIdx = 0;
1475  faceIdx < mesh.m_FaceIdxSize;
1476  faceIdx += 3 )
1477  {
1478  const unsigned int idx0 = mesh.m_FaceIdx[faceIdx + 0];
1479  const unsigned int idx1 = mesh.m_FaceIdx[faceIdx + 1];
1480  const unsigned int idx2 = mesh.m_FaceIdx[faceIdx + 2];
1481 
1482  wxASSERT( idx0 < mesh.m_VertexSize );
1483  wxASSERT( idx1 < mesh.m_VertexSize );
1484  wxASSERT( idx2 < mesh.m_VertexSize );
1485 
1486  if( ( idx0 < mesh.m_VertexSize ) &&
1487  ( idx1 < mesh.m_VertexSize ) &&
1488  ( idx2 < mesh.m_VertexSize ) )
1489  {
1490  const SFVEC3F &v0 = mesh.m_Positions[idx0];
1491  const SFVEC3F &v1 = mesh.m_Positions[idx1];
1492  const SFVEC3F &v2 = mesh.m_Positions[idx2];
1493 
1494  const SFVEC3F &n0 = mesh.m_Normals[idx0];
1495  const SFVEC3F &n1 = mesh.m_Normals[idx1];
1496  const SFVEC3F &n2 = mesh.m_Normals[idx2];
1497 
1498  // Transform vertex with the model matrix
1499  const SFVEC3F vt0 = SFVEC3F( aModelMatrix * glm::vec4( v0, 1.0f) );
1500  const SFVEC3F vt1 = SFVEC3F( aModelMatrix * glm::vec4( v1, 1.0f) );
1501  const SFVEC3F vt2 = SFVEC3F( aModelMatrix * glm::vec4( v2, 1.0f) );
1502 
1503  const SFVEC3F nt0 = glm::normalize( SFVEC3F( normalMatrix * n0 ) );
1504  const SFVEC3F nt1 = glm::normalize( SFVEC3F( normalMatrix * n1 ) );
1505  const SFVEC3F nt2 = glm::normalize( SFVEC3F( normalMatrix * n2 ) );
1506 
1507  CTRIANGLE *newTriangle = new CTRIANGLE( vt0, vt2, vt1,
1508  nt0, nt2, nt1 );
1509 
1510 
1511 
1512  m_object_container.Add( newTriangle );
1513  newTriangle->SetMaterial( (const CMATERIAL *)&blinn_material );
1514 
1515  if( mesh.m_Color == NULL )
1516  {
1517  const SFVEC3F diffuseColor =
1518  a3DModel->m_Materials[mesh.m_MaterialIdx].m_Diffuse;
1519 
1521  newTriangle->SetColor( ConvertSRGBToLinear( MaterialDiffuseToColorCAD( diffuseColor ) ) );
1522  else
1523  newTriangle->SetColor( ConvertSRGBToLinear( diffuseColor ) );
1524  }
1525  else
1526  {
1528  newTriangle->SetColor( ConvertSRGBToLinear( MaterialDiffuseToColorCAD( mesh.m_Color[idx0] ) ),
1531  else
1532  newTriangle->SetColor( ConvertSRGBToLinear( mesh.m_Color[idx0] ),
1533  ConvertSRGBToLinear( mesh.m_Color[idx1] ),
1534  ConvertSRGBToLinear( mesh.m_Color[idx2] ) );
1535  }
1536  }
1537  }
1538  }
1539  }
1540  }
1541 }
SFVEC3F * m_Normals
Vertex normals array.
Definition: c3dmodel.h:80
float RGBtoGray(const SFVEC3F &aColor)
Definition: 3d_math.h:147
SFVEC3F m_Ambient
Definition: c3dmodel.h:39
CPLASTICNORMAL m_plastic_normal_perturbator
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
MATERIAL_MODE MaterialModeGet() const
MaterialModeGet.
Definition: cinfo3d_visu.h:246
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
float m_Transparency
1.0 is completely transparent, 0.0 completely opaque
Definition: c3dmodel.h:44
void SetNormalPerturbator(const CPROCEDURALGENERATOR *aPerturbator)
Definition: cmaterial.h:220
SFVEC3F * m_Positions
Vertex position array.
Definition: c3dmodel.h:79
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define abs(a)
Definition: auxiliary.h:84
Per-vertex normal/color/texcoors structure.
Definition: c3dmodel.h:76
SMESH * m_Meshes
The meshes list of this model.
Definition: c3dmodel.h:93
unsigned int m_FaceIdxSize
Number of elements of the m_FaceIdx array.
Definition: c3dmodel.h:83
std::vector< CBLINN_PHONG_MATERIAL > MODEL_MATERIALS
Vector of materials.
void SetColor(const SFVEC3F &aColor)
Definition: ctriangle.cpp:161
unsigned int m_VertexSize
Number of vertex in the arrays.
Definition: c3dmodel.h:78
Blinn Phong based material https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model.
Definition: cmaterial.h:248
SFVEC3F * m_Color
Vertex color array, can be NULL.
Definition: c3dmodel.h:82
Use a gray shading based on diffuse material.
Definition: 3d_enums.h:95
float m_Shininess
Definition: c3dmodel.h:43
unsigned int m_MaterialsSize
Number of materials in the material array.
Definition: c3dmodel.h:95
A triangle object.
Definition: ctriangle.h:42
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
Use all material properties from model file.
Definition: 3d_enums.h:93
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
SFVEC3F MaterialDiffuseToColorCAD(const SFVEC3F &aDiffuseColor)
Definition: 3d_math.h:154
SFVEC3F m_Emissive
Definition: c3dmodel.h:41
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
unsigned int m_MaterialIdx
Material Index to be used in this mesh (must be < m_MaterialsSize )
Definition: c3dmodel.h:85
SMATERIAL * m_Materials
The materials list of this model.
Definition: c3dmodel.h:96
SFVEC3F m_Diffuse
Default diffuse color if m_Color is NULL.
Definition: c3dmodel.h:40
unsigned int * m_FaceIdx
Triangle Face Indexes.
Definition: c3dmodel.h:84
unsigned int m_MeshesSize
Number of meshes in the array.
Definition: c3dmodel.h:92
MAP_MODEL_MATERIALS m_model_materials
Stores materials of the 3D models.
SFVEC3F m_Specular
Definition: c3dmodel.h:42
void C3D_RENDER_RAYTRACING::add_3D_vias_and_pads_to_container ( )
private

Definition at line 1169 of file c3d_render_createscene.cpp.

References CINFO3D_VISU::GetBoard(), insert3DPadHole(), insert3DViaHole(), BOARD::m_Modules, C3D_RENDER_BASE::m_settings, BOARD::m_Track, TRACK::Next(), MODULE::Next(), D_PAD::Next(), PAD_ATTRIB_HOLE_NOT_PLATED, and PCB_VIA_T.

Referenced by reload().

1170 {
1171  // Insert plated vertical holes inside the board
1172  // /////////////////////////////////////////////////////////////////////////
1173 
1174  // Insert vias holes (vertical cylinders)
1175  for( const TRACK* track = m_settings.GetBoard()->m_Track;
1176  track;
1177  track = track->Next() )
1178  {
1179  if( track->Type() == PCB_VIA_T )
1180  {
1181  const VIA *via = static_cast<const VIA*>(track);
1182  insert3DViaHole( via );
1183  }
1184  }
1185 
1186  // Insert pads holes (vertical cylinders)
1187  for( const MODULE* module = m_settings.GetBoard()->m_Modules;
1188  module;
1189  module = module->Next() )
1190  {
1191  for( const D_PAD* pad = module->Pads(); pad; pad = pad->Next() )
1192  if( pad->GetAttribute () != PAD_ATTRIB_HOLE_NOT_PLATED )
1193  {
1194  insert3DPadHole( pad );
1195  }
1196  }
1197 }
like PAD_STANDARD, but not plated mechanical use only, no connection allowed
Definition: pad_shapes.h:63
MODULE * Next() const
Definition: class_module.h:99
void insert3DViaHole(const VIA *aVia)
CINFO3D_VISU & m_settings
settings refrence in use for this render
D_PAD * Next() const
Definition: class_pad.h:106
TRACK * Next() const
Definition: class_track.h:97
DLIST< MODULE > m_Modules
Definition: class_board.h:243
class VIA, a via (like a track segment on a copper layer)
Definition: typeinfo.h:108
DLIST< TRACK > m_Track
Definition: class_board.h:244
void insert3DPadHole(const D_PAD *aPad)
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
void C3D_RENDER_RAYTRACING::create_3d_object_from ( CCONTAINER aDstContainer,
const COBJECT2D aObject2D,
float  aZMin,
float  aZMax,
const CMATERIAL aMaterial,
const SFVEC3F aObjColor 
)
private

Function create_3d_object_from.

Creates on or more 3D objects form a 2D object and Z positions. It try optimize some types of objects that will be faster to trace than the CLAYERITEM object.

Parameters
aObject2D
aZMin
aZMax

Definition at line 179 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER::Add(), ConvertSRGBToLinear(), COBJECT2D::GetBBox(), COBJECT2D::GetObjectType(), m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, CBBOX2D::Max(), CBBOX2D::Min(), OBJ2D_DUMMYBLOCK, OBJ2D_ROUNDSEG, CLAYERITEM::SetColor(), CROUNDSEG::SetColor(), CXYPLANE::SetColor(), and COBJECT::SetMaterial().

Referenced by reload().

184 {
185  switch( aObject2D->GetObjectType() )
186  {
187  case OBJ2D_DUMMYBLOCK:
188  {
190 #if 1
191  CXYPLANE *objPtr;
192  objPtr = new CXYPLANE( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
193  aObject2D->GetBBox().Min().y,
194  aZMin ),
195  SFVEC3F( aObject2D->GetBBox().Max().x,
196  aObject2D->GetBBox().Max().y,
197  aZMin ) ) );
198  objPtr->SetMaterial( aMaterial );
199  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
200  aDstContainer.Add( objPtr );
201 
202  objPtr = new CXYPLANE( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
203  aObject2D->GetBBox().Min().y,
204  aZMax ),
205  SFVEC3F( aObject2D->GetBBox().Max().x,
206  aObject2D->GetBBox().Max().y,
207  aZMax ) ) );
208  objPtr->SetMaterial( aMaterial );
209  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
210  aDstContainer.Add( objPtr );
211 #else
212  objPtr = new CDUMMYBLOCK( CBBOX ( SFVEC3F( aObject2D->GetBBox().Min().x,
213  aObject2D->GetBBox().Min().y,
214  aZMin ),
215  SFVEC3F( aObject2D->GetBBox().Max().x,
216  aObject2D->GetBBox().Max().y,
217  aZMax ) ) );
218  objPtr->SetMaterial( aMaterial );
219  aDstContainer.Add( objPtr );
220 #endif
221  }
222  break;
223 
224  case OBJ2D_ROUNDSEG:
225  {
227 
228  const CROUNDSEGMENT2D *aRoundSeg2D = static_cast<const CROUNDSEGMENT2D *>( aObject2D );
229  CROUNDSEG *objPtr = new CROUNDSEG( *aRoundSeg2D, aZMin, aZMax );
230  objPtr->SetMaterial( aMaterial );
231  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
232  aDstContainer.Add( objPtr );
233  }
234  break;
235 
236 
237  default:
238  {
239  CLAYERITEM *objPtr = new CLAYERITEM( aObject2D, aZMin, aZMax );
240  objPtr->SetMaterial( aMaterial );
241  objPtr->SetColor( ConvertSRGBToLinear( aObjColor ) );
242  aDstContainer.Add( objPtr );
243  }
244  break;
245  }
246 }
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
A dummy block is used to fill the polygons.
Definition: cdummyblock.h:39
void SetColor(SFVEC3F aObjColor)
Definition: croundseg.h:48
A plane that is parallel to XY plane.
Definition: cplane.h:38
unsigned int m_stats_converted_dummy_to_plane
void SetColor(SFVEC3F aObjColor)
Definition: cplane.h:52
OBJECT2D_TYPE GetObjectType() const
Definition: cobject2d.h:125
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
const SFVEC2F & Min() const
Function Min return the minimun vertex pointer.
Definition: cbbox2d.h:176
Class CBBOX manages a bounding box defined by two SFVEC3F min max points.
Definition: cbbox.h:40
const SFVEC2F & Max() const
Function Max return the maximum vertex pointer.
Definition: cbbox2d.h:183
int C3D_RENDER_RAYTRACING::GetWaitForEditingTimeOut ( )
overridevirtual

GetWaitForEditingTimeOut - Give the interface the time (in ms) that it should wait for editing or movements before (this works for display preview mode)

Returns
a value in miliseconds

Implements C3D_RENDER_BASE.

Definition at line 93 of file c3d_render_raytracing.cpp.

94 {
95  return 1000; // ms
96 }
void C3D_RENDER_RAYTRACING::initialize_block_positions ( )
private

Definition at line 2064 of file c3d_render_raytracing.cpp.

References DecodeMorton2X(), DecodeMorton2Y(), m_blockPositions, m_blockPositionsFast, m_fastPreviewModeSize, m_postshader_ssao, m_realBufferSize, m_shaderBuffer, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, opengl_init_pbo(), RAYPACKET_DIM, RAYPACKET_INVMASK, and CPOSTSHADER::UpdateSize().

Referenced by Redraw().

2065 {
2066 
2068 
2069  // Calc block positions for fast preview mode
2070  // /////////////////////////////////////////////////////////////////////
2071  m_blockPositionsFast.clear();
2072 
2073  unsigned int i = 0;
2074 
2075  while(1)
2076  {
2077  const unsigned int mX = DecodeMorton2X(i);
2078  const unsigned int mY = DecodeMorton2Y(i);
2079 
2080  i++;
2081 
2082  const SFVEC2UI blockPos( mX * 4 * RAYPACKET_DIM - mX * 4,
2083  mY * 4 * RAYPACKET_DIM - mY * 4);
2084 
2085  if( ( blockPos.x >= ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4 ) ) ) &&
2086  ( blockPos.y >= ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4 ) ) ) )
2087  break;
2088 
2089  if( ( blockPos.x < ( (unsigned int)m_windowSize.x - ( 4 * RAYPACKET_DIM + 4) ) ) &&
2090  ( blockPos.y < ( (unsigned int)m_windowSize.y - ( 4 * RAYPACKET_DIM + 4) ) ) )
2091  {
2092  m_blockPositionsFast.push_back( blockPos );
2093 
2094  if( blockPos.x > m_realBufferSize.x )
2095  m_realBufferSize.x = blockPos.x;
2096 
2097  if( blockPos.y > m_realBufferSize.y )
2098  m_realBufferSize.y = blockPos.y;
2099  }
2100  }
2101 
2103 
2106 
2107  m_xoffset = (m_windowSize.x - m_realBufferSize.x) / 2;
2108  m_yoffset = (m_windowSize.y - m_realBufferSize.y) / 2;
2109 
2111 
2112 
2113  // Calc block positions
2114  // /////////////////////////////////////////////////////////////////////
2115  m_blockPositions.clear();
2118 
2119  i = 0;
2120 
2121  while(1)
2122  {
2123  SFVEC2UI blockPos( DecodeMorton2X(i) * RAYPACKET_DIM,
2124  DecodeMorton2Y(i) * RAYPACKET_DIM );
2125  i++;
2126 
2127  if( (blockPos.x >= m_realBufferSize.x) && (blockPos.y >= m_realBufferSize.y) )
2128  break;
2129 
2130  if( (blockPos.x < m_realBufferSize.x) && (blockPos.y < m_realBufferSize.y) )
2131  m_blockPositions.push_back( blockPos );
2132  }
2133 
2134  // Create m_shader buffer
2135  delete[] m_shaderBuffer;
2137 
2138  opengl_init_pbo();
2139 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
CPOSTSHADER_SSAO m_postshader_ssao
uint32_t DecodeMorton2X(uint32_t code)
Definition: mortoncodes.cpp:98
#define RAYPACKET_INVMASK
Definition: raypacket.h:39
uint32_t DecodeMorton2Y(uint32_t code)
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
wxSize m_windowSize
The window size that this camera is working.
std::vector< SFVEC2UI > m_blockPositionsFast
this encodes the Morton code positions (on fast preview mode)
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
void UpdateSize(const SFVEC2UI &aSize)
Definition: cpostshader.cpp:72
void C3D_RENDER_RAYTRACING::initializeNewWindowSize ( )
private

Definition at line 2021 of file c3d_render_raytracing.cpp.

References opengl_init_pbo().

Referenced by SetCurWindowSize().

2022 {
2023  opengl_init_pbo();
2024 }
bool C3D_RENDER_RAYTRACING::initializeOpenGL ( )
private

Definition at line 2056 of file c3d_render_raytracing.cpp.

References C3D_RENDER_BASE::m_is_opengl_initialized.

Referenced by Redraw().

2057 {
2058  m_is_opengl_initialized = true;
2059 
2060  return true;
2061 }
bool m_is_opengl_initialized
flag if the opengl specific for this render was already initialized
void C3D_RENDER_RAYTRACING::insert3DPadHole ( const D_PAD aPad)
private

Definition at line 1012 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), B_Cu, CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), CSGITEM_EMPTY, CSGITEM_FULL, F_Cu, FL_USE_REALISTIC_MODE, COBJECT2D::GetBBox(), CINFO3D_VISU::GetCopperThickness3DU(), CINFO3D_VISU::GetCopperThicknessBIU(), D_PAD::GetDrillSize(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetItemColor(), CINFO3D_VISU::GetLayerBottomZpos3DU(), CGENERICCONTAINER2D::GetList(), CBVHCONTAINER2D::GetListObjectsIntersects(), D_PAD::GetOrientation(), D_PAD::GetPosition(), CINFO3D_VISU::GetThroughHole_Inner(), COBJECT2D::Intersects(), m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_materials, m_object_container, C3D_RENDER_BASE::m_settings, PADS_VISIBLE, RotatePoint(), CLAYERITEM::SetColor(), COBJECT::SetMaterial(), wxPoint::x, and wxPoint::y.

Referenced by add_3D_vias_and_pads_to_container().

1013 {
1014  const COBJECT2D *object2d_A = NULL;
1015 
1016  SFVEC3F objColor;
1017 
1019  objColor = (SFVEC3F)m_settings.m_CopperColor;
1020  else
1021  objColor = m_settings.GetItemColor( PADS_VISIBLE );
1022 
1023  const wxSize drillsize = aPad->GetDrillSize();
1024  const bool hasHole = drillsize.x && drillsize.y;
1025 
1026  if( !hasHole )
1027  return;
1028 
1029  const float topZ = m_settings.GetLayerBottomZpos3DU( F_Cu ) +
1031 
1032  const float botZ = m_settings.GetLayerBottomZpos3DU( B_Cu ) -
1034 
1035  if( drillsize.x == drillsize.y ) // usual round hole
1036  {
1037  SFVEC2F center = SFVEC2F( aPad->GetPosition().x * m_settings.BiuTo3Dunits(),
1038  -aPad->GetPosition().y * m_settings.BiuTo3Dunits() );
1039 
1040  CRING2D *ring = new CRING2D( center,
1041  ( drillsize.x / 2 ) * m_settings.BiuTo3Dunits(),
1042  ( ( drillsize.x / 2 ) +
1045  *aPad );
1046 
1048 
1049  object2d_A = ring;
1050  }
1051  else // Oblong hole
1052  {
1053  wxPoint ends_offset;
1054  int width;
1055 
1056  if( drillsize.x > drillsize.y ) // Horizontal oval
1057  {
1058  ends_offset.x = ( drillsize.x - drillsize.y ) / 2;
1059  width = drillsize.y;
1060  }
1061  else // Vertical oval
1062  {
1063  ends_offset.y = ( drillsize.y - drillsize.x ) / 2;
1064  width = drillsize.x;
1065  }
1066 
1067  RotatePoint( &ends_offset, aPad->GetOrientation() );
1068 
1069  wxPoint start = aPad->GetPosition() + ends_offset;
1070  wxPoint end = aPad->GetPosition() - ends_offset;
1071 
1072  CROUNDSEGMENT2D *innerSeg = new CROUNDSEGMENT2D(
1073  SFVEC2F( start.x * m_settings.BiuTo3Dunits(),
1074  -start.y * m_settings.BiuTo3Dunits() ),
1075  SFVEC2F( end.x * m_settings.BiuTo3Dunits(),
1076  -end.y * m_settings.BiuTo3Dunits() ),
1077  width * m_settings.BiuTo3Dunits(),
1078  *aPad );
1079 
1080  CROUNDSEGMENT2D *outterSeg = new CROUNDSEGMENT2D(
1081  SFVEC2F( start.x * m_settings.BiuTo3Dunits(),
1082  -start.y * m_settings.BiuTo3Dunits() ),
1083  SFVEC2F( end.x * m_settings.BiuTo3Dunits(),
1084  -end.y * m_settings.BiuTo3Dunits() ),
1085  ( width + m_settings.GetCopperThicknessBIU() * 2 ) *
1087  *aPad );
1088 
1089  // NOTE: the round segment width is the "diameter", so we double the thickness
1090 
1091  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
1092  object2d_B->push_back( innerSeg );
1093 
1094  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( outterSeg,
1095  object2d_B,
1096  CSGITEM_FULL,
1097  *aPad );
1098 
1099  m_containerWithObjectsToDelete.Add( itemCSG2d );
1100  m_containerWithObjectsToDelete.Add( innerSeg );
1101  m_containerWithObjectsToDelete.Add( outterSeg );
1102 
1103  object2d_A = itemCSG2d;
1104  }
1105 
1106 
1107  if( object2d_A )
1108  {
1109  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
1110 
1111  // Check if there are any other THT that intersects this hole
1112  // It will use the non inflated holes
1113  if( !m_settings.GetThroughHole_Inner().GetList().empty() )
1114  {
1115 
1116  CONST_LIST_OBJECT2D intersectionList;
1118  intersectionList );
1119 
1120  if( !intersectionList.empty() )
1121  {
1122  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
1123  hole != intersectionList.end();
1124  ++hole )
1125  {
1126  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
1127 
1128  if( object2d_A->Intersects( hole2d->GetBBox() ) )
1129  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
1130  object2d_B->push_back( hole2d );
1131  }
1132  }
1133  }
1134 
1135  if( object2d_B->empty() )
1136  {
1137  delete object2d_B;
1138  object2d_B = CSGITEM_EMPTY;
1139  }
1140 
1141  if( object2d_B == CSGITEM_EMPTY )
1142  {
1143  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A, topZ, botZ );
1144 
1145  objPtr->SetMaterial( &m_materials.m_Copper );
1146  objPtr->SetColor( ConvertSRGBToLinear( objColor ) );
1147  m_object_container.Add( objPtr );
1148  }
1149  else
1150  {
1151  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
1152  object2d_B,
1153  CSGITEM_FULL,
1154  (const BOARD_ITEM &)*aPad );
1155 
1156  m_containerWithObjectsToDelete.Add( itemCSG2d );
1157 
1158  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d, topZ, botZ );
1159 
1160  objPtr->SetMaterial( &m_materials.m_Copper );
1161  objPtr->SetColor( ConvertSRGBToLinear( objColor ) );
1162 
1163  m_object_container.Add( objPtr );
1164  }
1165  }
1166 }
multilayer pads, usually with holes
void GetListObjectsIntersects(const CBBOX2D &aBBox, CONST_LIST_OBJECT2D &aOutList) const override
GetListObjectsIntersects - Get a list of objects that intersects a bbox.
const LIST_OBJECT2D & GetList() const
Definition: ccontainer2d.h:62
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
float GetCopperThickness3DU() const
GetCopperThickness3DU - Get the current copper layer thickness.
Definition: cinfo3d_visu.h:165
Class BOARD_ITEM is a base class for any item which can be embedded within the BOARD container class...
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
SFVEC3F GetItemColor(int aItemId) const
GetItemColor - get the technical color of a layer.
float GetLayerBottomZpos3DU(LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
std::list< const COBJECT2D * > CONST_LIST_OBJECT2D
Definition: ccontainer2d.h:37
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
int GetCopperThicknessBIU() const
GetCopperThicknessBIU - Get the current copper layer thickness.
void RotatePoint(int *pX, int *pY, double angle)
Definition: trigo.cpp:317
const wxSize & GetDrillSize() const
Definition: class_pad.h:188
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define CSGITEM_EMPTY
This class is used to make constructive solig geometry for items objects on layers.
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
const wxPoint & GetPosition() const override
Definition: class_pad.h:170
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
#define CSGITEM_FULL
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
const CBVHCONTAINER2D & GetThroughHole_Inner() const
GetThroughHole_Inner - Get the ThroughHole container.
Definition: cinfo3d_visu.h:350
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
double GetOrientation() const
Function GetOrientation returns the rotation angle of the pad in tenths of degrees, but soon degrees.
Definition: class_pad.h:214
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
virtual bool Intersects(const CBBOX2D &aBBox) const =0
Function Intersects.
struct C3D_RENDER_RAYTRACING::@41 m_materials
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
void C3D_RENDER_RAYTRACING::insert3DViaHole ( const VIA aVia)
private

Definition at line 972 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), FL_USE_REALISTIC_MODE, CINFO3D_VISU::GetCopperThickness3DU(), CINFO3D_VISU::GetCopperThicknessBIU(), VIA::GetDrillValue(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetItemColor(), CINFO3D_VISU::GetLayerBottomZpos3DU(), TRACK::GetStart(), VIA::GetViaType(), VIA::LayerPair(), m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_materials, m_object_container, C3D_RENDER_BASE::m_settings, CLAYERITEM::SetColor(), COBJECT::SetMaterial(), VIAS_VISIBLE, wxPoint::x, and wxPoint::y.

Referenced by add_3D_vias_and_pads_to_container().

973 {
974  LAYER_ID top_layer, bottom_layer;
975  int radiusBUI = (aVia->GetDrillValue() / 2);
976 
977  aVia->LayerPair( &top_layer, &bottom_layer );
978 
979  float topZ = m_settings.GetLayerBottomZpos3DU( top_layer ) +
981 
982  float botZ = m_settings.GetLayerBottomZpos3DU( bottom_layer ) -
984 
985  const SFVEC2F center = SFVEC2F( aVia->GetStart().x * m_settings.BiuTo3Dunits(),
986  -aVia->GetStart().y * m_settings.BiuTo3Dunits() );
987 
988  CRING2D *ring = new CRING2D( center,
989  radiusBUI * m_settings.BiuTo3Dunits(),
990  ( radiusBUI + m_settings.GetCopperThicknessBIU() ) *
992  *aVia );
993 
995 
996 
997  CLAYERITEM *objPtr = new CLAYERITEM( ring, topZ, botZ );
998 
999  objPtr->SetMaterial( &m_materials.m_Copper );
1000 
1003  else
1005 
1006  m_object_container.Add( objPtr );
1007 }
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
float GetCopperThickness3DU() const
GetCopperThickness3DU - Get the current copper layer thickness.
Definition: cinfo3d_visu.h:165
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
SFVEC3F GetItemColor(int aItemId) const
GetItemColor - get the technical color of a layer.
float GetLayerBottomZpos3DU(LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
int GetCopperThicknessBIU() const
GetCopperThicknessBIU - Get the current copper layer thickness.
CINFO3D_VISU & m_settings
settings refrence in use for this render
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
VIATYPE_T GetViaType() const
Definition: class_track.h:442
const wxPoint & GetStart() const
Definition: class_track.h:120
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
void LayerPair(LAYER_ID *top_layer, LAYER_ID *bottom_layer) const
Function LayerPair Return the 2 layers used by the via (the via actually uses all layers between thes...
int GetDrillValue() const
Function GetDrillValue "calculates" the drill value for vias (m-Drill if > 0, or default drill value ...
LAYER_ID
Enum LAYER_ID is the set of PCB layers.
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
struct C3D_RENDER_RAYTRACING::@41 m_materials
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
bool C3D_RENDER_BASE::IsReloadRequestPending ( ) const
inlineinherited

IsReloadRequestPending - Query if there is a pending reload request.

Returns
true if it wants to reload, false if there is no reload pending

Definition at line 79 of file c3d_render_base.h.

References C3D_RENDER_BASE::m_reloadRequested.

Referenced by EDA_3D_CANVAS::IsReloadRequestPending().

79 { return m_reloadRequested; }
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
void C3D_RENDER_RAYTRACING::load_3D_models ( )
private

Definition at line 1200 of file c3d_render_createscene.cpp.

References add_3D_models(), CINFO3D_VISU::BiuTo3Dunits(), CINFO3D_VISU::Get3DCacheManager(), CINFO3D_VISU::GetBoard(), S3D_CACHE::GetModel(), CINFO3D_VISU::GetModulesZcoord3DIU(), BOARD::m_Modules, C3D_RENDER_BASE::m_settings, MODULE::Next(), scale, CINFO3D_VISU::ShouldModuleBeDisplayed(), UNITS3D_TO_UNITSPCB, wxPoint::x, and wxPoint::y.

Referenced by reload().

1201 {
1202  // Go for all modules
1203  for( const MODULE* module = m_settings.GetBoard()->m_Modules;
1204  module;
1205  module = module->Next() )
1206  {
1207  if( (!module->Models().empty() ) &&
1208  m_settings.ShouldModuleBeDisplayed( (MODULE_ATTR_T)module->GetAttributes() ) )
1209  {
1210  double zpos = m_settings.GetModulesZcoord3DIU( module->IsFlipped() );
1211 
1212  wxPoint pos = module->GetPosition();
1213 
1214  glm::mat4 moduleMatrix = glm::mat4();
1215 
1216  moduleMatrix = glm::translate( moduleMatrix,
1217  SFVEC3F( pos.x * m_settings.BiuTo3Dunits(),
1218  -pos.y * m_settings.BiuTo3Dunits(),
1219  zpos ) );
1220 
1221  if( module->GetOrientation() )
1222  {
1223  moduleMatrix = glm::rotate( moduleMatrix,
1224  ( (float)(module->GetOrientation() / 10.0f) / 180.0f ) *
1225  glm::pi<float>(),
1226  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1227  }
1228 
1229 
1230  if( module->IsFlipped() )
1231  {
1232  moduleMatrix = glm::rotate( moduleMatrix,
1233  glm::pi<float>(),
1234  SFVEC3F( 0.0f, 1.0f, 0.0f ) );
1235 
1236  moduleMatrix = glm::rotate( moduleMatrix,
1237  glm::pi<float>(),
1238  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1239  }
1240 
1241  const double modelunit_to_3d_units_factor = m_settings.BiuTo3Dunits() *
1243 
1244  moduleMatrix = glm::scale( moduleMatrix,
1245  SFVEC3F( modelunit_to_3d_units_factor,
1246  modelunit_to_3d_units_factor,
1247  modelunit_to_3d_units_factor ) );
1248 
1249 
1250  // Get the list of model files for this model
1251  std::list<S3D_INFO>::const_iterator sM = module->Models().begin();
1252  std::list<S3D_INFO>::const_iterator eM = module->Models().end();
1253 
1254  while( sM != eM )
1255  {
1256  // get it from cache
1257  const S3DMODEL *modelPtr =
1258  m_settings.Get3DCacheManager()->GetModel( sM->m_Filename );
1259 
1260  // only add it if the return is not NULL
1261  if( modelPtr )
1262  {
1263  glm::mat4 modelMatrix = moduleMatrix;
1264 
1265  modelMatrix = glm::translate( modelMatrix,
1266  SFVEC3F( sM->m_Offset.x * 25.4f,
1267  sM->m_Offset.y * 25.4f,
1268  sM->m_Offset.z * 25.4f ) );
1269 
1270  modelMatrix = glm::rotate( modelMatrix,
1271  (float)-( sM->m_Rotation.z / 180.0f ) *
1272  glm::pi<float>(),
1273  SFVEC3F( 0.0f, 0.0f, 1.0f ) );
1274 
1275  modelMatrix = glm::rotate( modelMatrix,
1276  (float)-( sM->m_Rotation.y / 180.0f ) *
1277  glm::pi<float>(),
1278  SFVEC3F( 0.0f, 1.0f, 0.0f ) );
1279 
1280  modelMatrix = glm::rotate( modelMatrix,
1281  (float)-( sM->m_Rotation.x / 180.0f ) *
1282  glm::pi<float>(),
1283  SFVEC3F( 1.0f, 0.0f, 0.0f ) );
1284 
1285  modelMatrix = glm::scale( modelMatrix,
1286  SFVEC3F( sM->m_Scale.x,
1287  sM->m_Scale.y,
1288  sM->m_Scale.z ) );
1289 
1290  add_3D_models( modelPtr, modelMatrix );
1291  }
1292 
1293  ++sM;
1294  }
1295  }
1296  }
1297 }
S3D_CACHE * Get3DCacheManager() const
Get3DCacheManager - Return the 3d cache manager pointer.
Definition: cinfo3d_visu.h:88
MODULE * Next() const
Definition: class_module.h:99
CINFO3D_VISU & m_settings
settings refrence in use for this render
#define UNITS3D_TO_UNITSPCB
Scale convertion from 3d model units to pcb units.
S3DMODEL * GetModel(const wxString &aModelFileName)
Function GetModel attempts to load the scene data for a model and to translate it into an S3D_MODEL s...
Definition: 3d_cache.cpp:781
MODULE_ATTR_T
Enum MODULE_ATTR_T is the set of attributes allowed within a MODULE, using MODULE::SetAttributes() an...
Definition: class_module.h:73
void add_3D_models(const S3DMODEL *a3DModel, const glm::mat4 &aModelMatrix)
float GetModulesZcoord3DIU(bool aIsFlipped) const
GetModulesZcoord3DIU - Get the position of the module in 3d integer units considering if it is flippe...
const int scale
bool ShouldModuleBeDisplayed(MODULE_ATTR_T aModuleAttributs) const
ShouldModuleBeDisplayed - Test if module should be displayed in relation to attributs and the flags...
DLIST< MODULE > m_Modules
Definition: class_board.h:243
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
Store the a model based on meshes and materials.
Definition: c3dmodel.h:90
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
void C3D_RENDER_RAYTRACING::opengl_delete_pbo ( )
private

Definition at line 99 of file c3d_render_raytracing.cpp.

References m_opengl_support_vertex_buffer_object, and m_pboId.

Referenced by opengl_init_pbo(), and ~C3D_RENDER_RAYTRACING().

100 {
101  // Delete PBO if it was created
103  {
104  if( glIsBufferARB( m_pboId ) )
105  glDeleteBuffers( 1, &m_pboId );
106 
107  m_pboId = GL_NONE;
108  }
109 }
void C3D_RENDER_RAYTRACING::opengl_init_pbo ( )
private

Definition at line 2027 of file c3d_render_raytracing.cpp.

References C3D_RENDER_BASE::m_logTrace, m_opengl_support_vertex_buffer_object, m_pboDataSize, m_pboId, m_realBufferSize, and opengl_delete_pbo().

Referenced by initialize_block_positions(), and initializeNewWindowSize().

2028 {
2029  if( GLEW_ARB_pixel_buffer_object )
2030  {
2032 
2033  // Try to delete vbo if it was already initialized
2035 
2036  // Learn about Pixel buffer objects at:
2037  // http://www.songho.ca/opengl/gl_pbo.html
2038  // http://web.eecs.umich.edu/~sugih/courses/eecs487/lectures/25-PBO+Mipmapping.pdf
2039  // "create 2 pixel buffer objects, you need to delete them when program exits.
2040  // glBufferDataARB with NULL pointer reserves only memory space."
2041 
2042  // This sets the number of RGBA pixels
2044 
2045  glGenBuffersARB( 1, &m_pboId );
2046  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
2047  glBufferDataARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboDataSize, 0, GL_STREAM_DRAW_ARB );
2048  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
2049 
2050  wxLogTrace( m_logTrace,
2051  wxT( "C3D_RENDER_RAYTRACING:: GLEW_ARB_pixel_buffer_object is supported" ) );
2052  }
2053 }
static const wxChar * m_logTrace
Trace mask used to enable or disable the trace output of this class.
bool C3D_RENDER_RAYTRACING::Redraw ( bool  aIsMoving,
REPORTER aStatusTextReporter 
)
overridevirtual

Redraw - Ask to redraw the view.

Parameters
aIsMovingif the user is moving the scene, it should be render in preview mode
aStatusTextReportera pointer to the status progress reporter
Returns
it will return true if the render would like to redraw again

Implements C3D_RENDER_BASE.

Definition at line 148 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), CCAMERA::GetDir(), initialize_block_positions(), initializeOpenGL(), CINFO3D_VISU::m_BgColorBot, CINFO3D_VISU::m_BgColorTop, m_camera_light, C3D_RENDER_BASE::m_is_opengl_initialized, m_oldWindowsSize, m_pboId, m_realBufferSize, C3D_RENDER_BASE::m_reloadRequested, m_rt_render_state, C3D_RENDER_BASE::m_settings, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, OGL_DrawBackground(), CCAMERA::ParametersChanged(), reload(), render(), render_preview(), REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_MAX, and CDIRECTIONALLIGHT::SetDirection().

149 {
150  bool requestRedraw = false;
151 
152  // Initialize openGL if need
153  // /////////////////////////////////////////////////////////////////////////
155  {
156  if( !initializeOpenGL() )
157  return false;
158 
159  //aIsMoving = true;
160  requestRedraw = true;
161 
162  // It will assign the first time the windows size, so it will now
163  // revert to preview mode the first time the Redraw is called
166  }
167 
168 
169  // Reload board if it was requested
170  // /////////////////////////////////////////////////////////////////////////
171  if( m_reloadRequested )
172  {
173  if( aStatusTextReporter )
174  aStatusTextReporter->Report( _( "Loading..." ) );
175 
176  //aIsMoving = true;
177  requestRedraw = true;
178  reload( aStatusTextReporter );
179  }
180 
181 
182  // Recalculate constants if windows size was changed
183  // /////////////////////////////////////////////////////////////////////////
185  {
187  aIsMoving = true;
188  requestRedraw = true;
189 
191  }
192 
193 
194  // Clear buffers
195  // /////////////////////////////////////////////////////////////////////////
196  glClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
197  glClearDepth( 1.0f );
198  glClearStencil( 0x00 );
199  glClear( GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
200 
201  // 4-byte pixel alignment
202  glPixelStorei( GL_UNPACK_ALIGNMENT, 4 );
203 
204  glDisable( GL_STENCIL_TEST );
205  glDisable( GL_LIGHTING );
206  glDisable( GL_COLOR_MATERIAL );
207  glDisable( GL_DEPTH_TEST );
208  glDisable( GL_TEXTURE_2D );
209  glDisable( GL_BLEND );
210 
211 
212  const bool was_camera_changed = m_settings.CameraGet().ParametersChanged();
213 
214  if( requestRedraw || aIsMoving || was_camera_changed )
215  m_rt_render_state = RT_RENDER_STATE_MAX; // Set to an invalid state,
216  // so it will restart again latter
217 
218 
219  // This will only render if need, otherwise it will redraw the PBO on the screen again
220  if( aIsMoving || was_camera_changed )
221  {
222  // Set head light (camera view light) with the oposite direction of the camera
223  if( m_camera_light )
225 
228 
229  // Bind PBO
230  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
231 
232  // Get the PBO pixel pointer to write the data
233  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
234  GL_WRITE_ONLY_ARB );
235 
236  if( ptrPBO )
237  {
238  render_preview( ptrPBO );
239 
240  // release pointer to mapping buffer, this initialize the coping to PBO
241  glUnmapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB );
242  }
243 
244  glWindowPos2i( m_xoffset, m_yoffset );
245  }
246  else
247  {
248  // Bind PBO
249  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, m_pboId );
250 
252  {
253  // Get the PBO pixel pointer to write the data
254  GLubyte *ptrPBO = (GLubyte *)glMapBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB,
255  GL_WRITE_ONLY_ARB );
256 
257  if( ptrPBO )
258  {
259  render( ptrPBO, aStatusTextReporter );
260 
262  requestRedraw = true;
263 
264  // release pointer to mapping buffer, this initialize the coping to PBO
265  glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
266  }
267  }
268 
270  {
271  glClear( GL_COLOR_BUFFER_BIT );
272  // Options if we want draw background instead
273  //OGL_DrawBackground( SFVEC3F(m_settings.m_BgColorTop),
274  // SFVEC3F(m_settings.m_BgColorBot) );
275  }
276 
277  glWindowPos2i( m_xoffset, m_yoffset );
278  }
279 
280  // This way it will blend the progress rendering with the last buffer. eg:
281  // if it was called after a openGL.
282  glEnable( GL_BLEND );
283  glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
284  glEnable( GL_ALPHA_TEST );
285 
286  glDrawPixels( m_realBufferSize.x,
288  GL_RGBA,
289  GL_UNSIGNED_BYTE,
290  0 );
291 
292  glBindBufferARB( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
293 
294  return requestRedraw;
295 }
wxSize m_oldWindowsSize
used to see if the windows size changed
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
const SFVEC3F & GetDir() const
Definition: ccamera.h:109
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
void OGL_DrawBackground(const SFVEC3F &aTopColor, const SFVEC3F &aBotColor)
OGL_DrawBackground.
Definition: ogl_utils.cpp:176
bool m_is_opengl_initialized
flag if the opengl specific for this render was already initialized
RT_RENDER_STATE m_rt_render_state
State used on quality render.
wxSize m_windowSize
The window size that this camera is working.
CDIRECTIONALLIGHT * m_camera_light
void SetDirection(const SFVEC3F &aDir)
SetDirection - Set directional light orientation.
Definition: clight.h:129
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void render_preview(GLubyte *ptrPBO)
void render(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
bool ParametersChanged()
Function ParametersChanged.
Definition: ccamera.cpp:567
void reload(REPORTER *aStatusTextReporter)
void C3D_RENDER_RAYTRACING::reload ( REPORTER aStatusTextReporter)
private

Definition at line 249 of file c3d_render_createscene.cpp.

References CGENERICCONTAINER2D::Add(), CGENERICCONTAINER::Add(), CLIGHTCONTAINER::Add(), add_3D_vias_and_pads_to_container(), B_Adhes, B_CrtYd, B_Cu, B_Fab, B_Mask, B_Paste, B_SilkS, CINFO3D_VISU::BiuTo3Dunits(), CINFO3D_VISU::CameraGet(), CGENERICCONTAINER2D::Clear(), CGENERICCONTAINER::Clear(), CLIGHTCONTAINER::Clear(), Cmts_User, Convert_path_polygon_to_polygon_blocks_and_dummy_blocks(), ConvertSRGBToLinear(), create_3d_object_from(), CSGITEM_EMPTY, CSGITEM_FULL, Dwgs_User, Eco1_User, Eco2_User, Edge_Cuts, F_Adhes, F_CrtYd, F_Cu, F_Fab, F_Mask, F_Paste, F_SilkS, FL_RENDER_RAYTRACING_BACKFLOOR, FL_RENDER_SHOW_HOLES_IN_ZONES, FL_SHOW_BOARD_BODY, FL_SOLDERMASK, FL_USE_REALISTIC_MODE, Format(), SHAPE_POLY_SET::Fracture(), CGENERICCONTAINER::GetBBox(), COBJECT2D::GetBBox(), CINFO3D_VISU::GetBBox3DU(), CINFO3D_VISU::GetBoard(), CINFO3D_VISU::GetBoardCenter3DU(), COBJECT2D::GetBoardItem(), CINFO3D_VISU::GetBoardPoly(), CBBOX::GetCenter(), COBJECT2D::GetCentroid(), CBBOX2D::GetExtent(), CINFO3D_VISU::GetFlag(), CINFO3D_VISU::GetLayerBottomZpos3DU(), CINFO3D_VISU::GetLayerColor(), CINFO3D_VISU::GetLayerTopZpos3DU(), CGENERICCONTAINER2D::GetList(), CGENERICCONTAINER::GetList(), CBVHCONTAINER2D::GetListObjectsIntersects(), CINFO3D_VISU::GetMapLayers(), CINFO3D_VISU::GetMapLayersHoles(), COBJECT2D::GetObjectType(), GetRunningMicroSecs(), CINFO3D_VISU::GetStats_Med_Hole_Diameter3DU(), CINFO3D_VISU::GetStats_Med_Via_Hole_Diameter3DU(), CINFO3D_VISU::GetStats_Nr_Holes(), CINFO3D_VISU::GetStats_Nr_Vias(), CINFO3D_VISU::GetThroughHole_Outer(), CINFO3D_VISU::InitSettings(), COBJECT3D_STATS::Instance(), COBJECT2D_STATS::Instance(), COBJECT2D::Intersects(), CBBOX::IsInitialized(), load_3D_models(), m_accelerator, CINFO3D_VISU::m_BgColorTop, CINFO3D_VISU::m_BoardBodyColor, m_camera_light, m_containerWithObjectsToDelete, CINFO3D_VISU::m_CopperColor, m_lights, m_materials, m_model_materials, m_object_container, m_outlineBoard2dObjects, C3D_RENDER_BASE::m_reloadRequested, C3D_RENDER_BASE::m_settings, CINFO3D_VISU::m_SilkScreenColor, CINFO3D_VISU::m_SolderMaskColor, CINFO3D_VISU::m_SolderPasteColor, m_stats_converted_dummy_to_plane, m_stats_converted_roundsegment2d_to_roundsegment, Margin, min, CBBOX::Min(), NextFloatDown(), NextFloatUp(), OBJ2D_FILLED_CIRCLE, SHAPE_POLY_SET::PM_FAST, COBJECT3D_STATS::PrintStats(), COBJECT2D_STATS::PrintStats(), RANGE_SCALE_3D, REPORTER::Report(), COBJECT3D_STATS::ResetStats(), COBJECT2D_STATS::ResetStats(), CBBOX::Scale(), CCAMERA::SetBoardLookAtPos(), CLIGHT::SetCastShadows(), CLAYERITEM::SetColor(), CVCYLINDER::SetColor(), CTRIANGLE::SetColor(), COBJECT::SetMaterial(), setupMaterials(), and SphericalToCartesian().

Referenced by Redraw().

250 {
251  m_reloadRequested = false;
252 
253  m_model_materials.clear();
254 
257 
258 #ifdef PRINT_STATISTICS_3D_VIEWER
259  printf("InitSettings...\n");
260 #endif
261 
262  unsigned stats_startReloadTime = GetRunningMicroSecs();
263 
264  m_settings.InitSettings( aStatusTextReporter );
265 
266 #ifdef PRINT_STATISTICS_3D_VIEWER
267  unsigned stats_endReloadTime = GetRunningMicroSecs();
268  unsigned stats_startConvertTime = GetRunningMicroSecs();
269  #endif
270 
271  SFVEC3F camera_pos = m_settings.GetBoardCenter3DU();
272  m_settings.CameraGet().SetBoardLookAtPos( camera_pos );
273 
276 
277 
278  // Create and add the outline board
279  // /////////////////////////////////////////////////////////////////////////
280 
281 #ifdef PRINT_STATISTICS_3D_VIEWER
282  printf("Create outline board...\n");
283 #endif
284 
286 
288 
289  if( ((const SHAPE_POLY_SET &)m_settings.GetBoardPoly()).OutlineCount() == 1 )
290  {
291  float divFactor = 0.0f;
292 
294  divFactor = m_settings.GetStats_Med_Via_Hole_Diameter3DU() * 18.0f;
295  else
297  divFactor = m_settings.GetStats_Med_Hole_Diameter3DU() * 8.0f;
298 
299  SHAPE_POLY_SET boardPolyCopy = m_settings.GetBoardPoly();
300  boardPolyCopy.Fracture( SHAPE_POLY_SET::PM_FAST );
301 
303  boardPolyCopy,
306  divFactor,
307  (const BOARD_ITEM &)*m_settings.GetBoard() );
308 
310  {
311  const LIST_OBJECT2D &listObjects = m_outlineBoard2dObjects->GetList();
312 
313  for( LIST_OBJECT2D::const_iterator object2d_iterator = listObjects.begin();
314  object2d_iterator != listObjects.end();
315  ++object2d_iterator )
316  {
317  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*object2d_iterator);
318 
319  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
320 
321  // Check if there are any THT that intersects this outline object part
322  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
323  {
324 
325  CONST_LIST_OBJECT2D intersectionList;
327  object2d_A->GetBBox(),
328  intersectionList );
329 
330  if( !intersectionList.empty() )
331  {
332  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
333  hole != intersectionList.end();
334  ++hole )
335  {
336  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
337 
338  if( object2d_A->Intersects( hole2d->GetBBox() ) )
339  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
340  object2d_B->push_back( hole2d );
341  }
342  }
343  }
344 
345  if( object2d_B->empty() )
346  {
347  delete object2d_B;
348  object2d_B = CSGITEM_EMPTY;
349  }
350 
351  if( object2d_B == CSGITEM_EMPTY )
352  {
353  #if 0
357  &m_materials.m_EpoxyBoard,
358  g_epoxyColor );
359  #else
360  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
363 
364  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
365  objPtr->SetColor( ConvertSRGBToLinear( (SFVEC3F)m_settings.m_BoardBodyColor ) );
366  m_object_container.Add( objPtr );
367  #endif
368  }
369  else
370  {
371  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D(
372  object2d_A,
373  object2d_B,
374  CSGITEM_FULL,
375  (const BOARD_ITEM &)*m_settings.GetBoard() );
376 
377  m_containerWithObjectsToDelete.Add( itemCSG2d );
378 
379  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
382 
383  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
385  m_object_container.Add( objPtr );
386  }
387  }
388 
389  // Add cylinders of the board body to container
390  // Note: This is actually a workarround for the holes in the board.
391  // The issue is because if a hole is in a border of a divided polygon ( ex
392  // a polygon or dummyblock) it will cut also the render of the hole.
393  // So this will add a full hole.
394  // In fact, that is not need if the hole have copper.
395  // /////////////////////////////////////////////////////////////////////////
396  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
397  {
399 
400  for( LIST_OBJECT2D::const_iterator hole = holeList.begin();
401  hole != holeList.end();
402  ++hole )
403  {
404  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
405 
406  switch( hole2d->GetObjectType() )
407  {
408  case OBJ2D_FILLED_CIRCLE:
409  {
410  const float radius = hole2d->GetBBox().GetExtent().x * 0.5f * 0.999f;
411 
412  CVCYLINDER *objPtr = new CVCYLINDER(
413  hole2d->GetCentroid(),
416  radius );
417 
418  objPtr->SetMaterial( &m_materials.m_EpoxyBoard );
420 
421  m_object_container.Add( objPtr );
422  }
423  break;
424 
425  default:
426  break;
427  }
428  }
429  }
430  }
431  }
432 
433 
434  // Add layers maps (except B_Mask and F_Mask)
435  // /////////////////////////////////////////////////////////////////////////
436 
437 #ifdef PRINT_STATISTICS_3D_VIEWER
438  printf("Add layers maps...\n");
439 #endif
440 
441  for( MAP_CONTAINER_2D::const_iterator ii = m_settings.GetMapLayers().begin();
442  ii != m_settings.GetMapLayers().end();
443  ++ii )
444  {
445  LAYER_ID layer_id = static_cast<LAYER_ID>(ii->first);
446 
447  // Mask kayers are not processed here because they are a special case
448  if( (layer_id == B_Mask) || (layer_id == F_Mask) )
449  continue;
450 
451  CMATERIAL *materialLayer = &m_materials.m_SilkS;
452  SFVEC3F layerColor = SFVEC3F( 0.0f, 0.0f, 0.0f );
453 
454  switch( layer_id )
455  {
456  case B_Adhes:
457  case F_Adhes:
458  break;
459 
460  case B_Paste:
461  case F_Paste:
462  materialLayer = &m_materials.m_Paste;
463 
465  layerColor = m_settings.m_SolderPasteColor;
466  else
467  layerColor = m_settings.GetLayerColor( layer_id );
468  break;
469 
470  case B_SilkS:
471  case F_SilkS:
472  materialLayer = &m_materials.m_SilkS;
473 
475  layerColor = m_settings.m_SilkScreenColor;
476  else
477  layerColor = m_settings.GetLayerColor( layer_id );
478  break;
479 
480  case Dwgs_User:
481  case Cmts_User:
482  case Eco1_User:
483  case Eco2_User:
484  case Edge_Cuts:
485  case Margin:
486  break;
487 
488  case B_CrtYd:
489  case F_CrtYd:
490  break;
491 
492  case B_Fab:
493  case F_Fab:
494  break;
495 
496  default:
497  materialLayer = &m_materials.m_Copper;
498 
500  layerColor = m_settings.m_CopperColor;
501  else
502  layerColor = m_settings.GetLayerColor( layer_id );
503  break;
504  }
505 
506  const CBVHCONTAINER2D *container2d = static_cast<const CBVHCONTAINER2D *>(ii->second);
507  const LIST_OBJECT2D &listObject2d = container2d->GetList();
508 
509  for( LIST_OBJECT2D::const_iterator itemOnLayer = listObject2d.begin();
510  itemOnLayer != listObject2d.end();
511  ++itemOnLayer )
512  {
513  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*itemOnLayer);
514 
515  // not yet used / implemented (can be used in future to clip the objects in the board borders
516  COBJECT2D *object2d_C = CSGITEM_FULL;
517 
518  std::vector<const COBJECT2D *> *object2d_B = CSGITEM_EMPTY;
519 
521  {
522  object2d_B = new std::vector<const COBJECT2D *>();
523 
524  // Check if there are any layerhole that intersects this object
525  // Eg: a segment is cutted by a via hole or THT hole.
526  // /////////////////////////////////////////////////////////////
527  const MAP_CONTAINER_2D &layerHolesMap = m_settings.GetMapLayersHoles();
528 
529  if( layerHolesMap.find(layer_id) != layerHolesMap.end() )
530  {
531  MAP_CONTAINER_2D::const_iterator ii_hole = layerHolesMap.find(layer_id);
532 
533  const CBVHCONTAINER2D *containerLayerHoles2d =
534  static_cast<const CBVHCONTAINER2D *>(ii_hole->second);
535 
536 
537  CONST_LIST_OBJECT2D intersectionList;
538  containerLayerHoles2d->GetListObjectsIntersects( object2d_A->GetBBox(),
539  intersectionList );
540 
541  if( !intersectionList.empty() )
542  {
543  for( CONST_LIST_OBJECT2D::const_iterator holeOnLayer =
544  intersectionList.begin();
545  holeOnLayer != intersectionList.end();
546  ++holeOnLayer )
547  {
548  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*holeOnLayer);
549 
550  //if( object2d_A->Intersects( hole2d->GetBBox() ) )
551  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
552  object2d_B->push_back( hole2d );
553  }
554  }
555  }
556 
557  // Check if there are any THT that intersects this object
558  // /////////////////////////////////////////////////////////////
559  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
560  {
561  CONST_LIST_OBJECT2D intersectionList;
562 
564  object2d_A->GetBBox(),
565  intersectionList );
566 
567  if( !intersectionList.empty() )
568  {
569  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
570  hole != intersectionList.end();
571  ++hole )
572  {
573  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
574 
575  //if( object2d_A->Intersects( hole2d->GetBBox() ) )
576  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
577  object2d_B->push_back( hole2d );
578  }
579  }
580  }
581 
582  if( object2d_B->empty() )
583  {
584  delete object2d_B;
585  object2d_B = CSGITEM_EMPTY;
586  }
587  }
588 
589  if( (object2d_B == CSGITEM_EMPTY) &&
590  (object2d_C == CSGITEM_FULL) )
591  {
592 #if 0
594  object2d_A,
595  m_settings.GetLayerBottomZpos3DU( layer_id ),
596  m_settings.GetLayerTopZpos3DU( layer_id ),
597  materialLayer,
598  layerColor );
599 #else
600  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
601  m_settings.GetLayerBottomZpos3DU( layer_id ),
602  m_settings.GetLayerTopZpos3DU( layer_id ) );
603  objPtr->SetMaterial( materialLayer );
604  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
605  m_object_container.Add( objPtr );
606 #endif
607  }
608  else
609  {
610 #if 1
611  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
612  object2d_B,
613  object2d_C,
614  object2d_A->GetBoardItem() );
615  m_containerWithObjectsToDelete.Add( itemCSG2d );
616 
617  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
618  m_settings.GetLayerBottomZpos3DU( layer_id ),
619  m_settings.GetLayerTopZpos3DU( layer_id ) );
620 
621  objPtr->SetMaterial( materialLayer );
622  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
623 
624  m_object_container.Add( objPtr );
625 #endif
626  }
627  }
628  }// for each layer on map
629 
630 
631 
632  // Add Mask layer
633  // Solder mask layers are "negative" layers so the elements that we have
634  // (in the container) should remove the board outline.
635  // We will check for all objects in the outline if it intersects any object
636  // in the layer container and also any hole.
637  // /////////////////////////////////////////////////////////////////////////
639  (m_outlineBoard2dObjects->GetList().size() >= 1) )
640  {
641  CMATERIAL *materialLayer = &m_materials.m_SolderMask;
642 
643  for( MAP_CONTAINER_2D::const_iterator ii = m_settings.GetMapLayers().begin();
644  ii != m_settings.GetMapLayers().end();
645  ++ii )
646  {
647  LAYER_ID layer_id = static_cast<LAYER_ID>(ii->first);
648 
649  const CBVHCONTAINER2D *containerLayer2d =
650  static_cast<const CBVHCONTAINER2D *>(ii->second);
651 
652  // Only get the Solder mask layers
653  if( !((layer_id == B_Mask) || (layer_id == F_Mask)) )
654  continue;
655 
656  SFVEC3F layerColor;
658  layerColor = m_settings.m_SolderMaskColor;
659  else
660  layerColor = m_settings.GetLayerColor( layer_id );
661 
662  const float zLayerMin = m_settings.GetLayerBottomZpos3DU( layer_id );
663  const float zLayerMax = m_settings.GetLayerTopZpos3DU( layer_id );
664 
665  // Get the outline board objects
666  const LIST_OBJECT2D &listObjects = m_outlineBoard2dObjects->GetList();
667 
668  for( LIST_OBJECT2D::const_iterator object2d_iterator = listObjects.begin();
669  object2d_iterator != listObjects.end();
670  ++object2d_iterator )
671  {
672  const COBJECT2D *object2d_A = static_cast<const COBJECT2D *>(*object2d_iterator);
673 
674  std::vector<const COBJECT2D *> *object2d_B = new std::vector<const COBJECT2D *>();
675 
676  // Check if there are any THT that intersects this outline object part
677  if( !m_settings.GetThroughHole_Outer().GetList().empty() )
678  {
679 
680  CONST_LIST_OBJECT2D intersectionList;
681 
683  object2d_A->GetBBox(),
684  intersectionList );
685 
686  if( !intersectionList.empty() )
687  {
688  for( CONST_LIST_OBJECT2D::const_iterator hole = intersectionList.begin();
689  hole != intersectionList.end();
690  ++hole )
691  {
692  const COBJECT2D *hole2d = static_cast<const COBJECT2D *>(*hole);
693 
694  if( object2d_A->Intersects( hole2d->GetBBox() ) )
695  //if( object2d_A->GetBBox().Intersects( hole2d->GetBBox() ) )
696  object2d_B->push_back( hole2d );
697  }
698  }
699  }
700 
701  // Check if there are any objects in the layer to subtract with the
702  // corrent object
703  if( !containerLayer2d->GetList().empty() )
704  {
705  CONST_LIST_OBJECT2D intersectionList;
706 
707  containerLayer2d->GetListObjectsIntersects( object2d_A->GetBBox(),
708  intersectionList );
709 
710  if( !intersectionList.empty() )
711  {
712  for( CONST_LIST_OBJECT2D::const_iterator obj = intersectionList.begin();
713  obj != intersectionList.end();
714  ++obj )
715  {
716  const COBJECT2D *obj2d = static_cast<const COBJECT2D *>(*obj);
717 
718  //if( object2d_A->Intersects( obj2d->GetBBox() ) )
719  //if( object2d_A->GetBBox().Intersects( obj2d->GetBBox() ) )
720  object2d_B->push_back( obj2d );
721  }
722  }
723  }
724 
725  if( object2d_B->empty() )
726  {
727  delete object2d_B;
728  object2d_B = CSGITEM_EMPTY;
729  }
730 
731  if( object2d_B == CSGITEM_EMPTY )
732  {
733  #if 0
735  object2d_A,
736  zLayerMin,
737  zLayerMax,
738  materialLayer,
739  layerColor );
740  #else
741  CLAYERITEM *objPtr = new CLAYERITEM( object2d_A,
742  zLayerMin,
743  zLayerMax );
744 
745  objPtr->SetMaterial( materialLayer );
746  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
747 
748  m_object_container.Add( objPtr );
749  #endif
750  }
751  else
752  {
753  CITEMLAYERCSG2D *itemCSG2d = new CITEMLAYERCSG2D( object2d_A,
754  object2d_B,
755  CSGITEM_FULL,
756  object2d_A->GetBoardItem() );
757 
758  m_containerWithObjectsToDelete.Add( itemCSG2d );
759 
760  CLAYERITEM *objPtr = new CLAYERITEM( itemCSG2d,
761  zLayerMin,
762  zLayerMax );
763  objPtr->SetMaterial( materialLayer );
764  objPtr->SetColor( ConvertSRGBToLinear( layerColor ) );
765 
766  m_object_container.Add( objPtr );
767  }
768  }
769  }
770  }
771 
773 
774 #ifdef PRINT_STATISTICS_3D_VIEWER
775  unsigned stats_endConvertTime = GetRunningMicroSecs();
776  unsigned stats_startLoad3DmodelsTime = stats_endConvertTime;
777 #endif
778 
779 
780  load_3D_models();
781 
782 
783 #ifdef PRINT_STATISTICS_3D_VIEWER
784  unsigned stats_endLoad3DmodelsTime = GetRunningMicroSecs();
785 #endif
786 
787  // Add floor
788  // /////////////////////////////////////////////////////////////////////////
790  {
791  CBBOX boardBBox = m_settings.GetBBox3DU();
792 
793  if( boardBBox.IsInitialized() )
794  {
795  boardBBox.Scale( 3.0f );
796 
797  if( m_object_container.GetList().size() > 0 )
798  {
799  CBBOX containerBBox = m_object_container.GetBBox();
800 
801  containerBBox.Scale( 1.3f );
802 
803  const SFVEC3F centerBBox = containerBBox.GetCenter();
804 
805  const float minZ = glm::min( containerBBox.Min().z,
806  boardBBox.Min().z );
807 
808  const SFVEC3F v1 = SFVEC3F( -RANGE_SCALE_3D * 4.0f,
809  -RANGE_SCALE_3D * 4.0f,
810  minZ ) +
811  SFVEC3F( centerBBox.x,
812  centerBBox.y,
813  0.0f );
814 
815  const SFVEC3F v3 = SFVEC3F( +RANGE_SCALE_3D * 4.0f,
816  +RANGE_SCALE_3D * 4.0f,
817  minZ ) +
818  SFVEC3F( centerBBox.x,
819  centerBBox.y,
820  0.0f );
821 
822  const SFVEC3F v2 = SFVEC3F( v1.x, v3.y, v1.z );
823  const SFVEC3F v4 = SFVEC3F( v3.x, v1.y, v1.z );
824 
825  CTRIANGLE *newTriangle1 = new CTRIANGLE( v1, v2, v3 );
826  CTRIANGLE *newTriangle2 = new CTRIANGLE( v3, v4, v1 );
827 
828  m_object_container.Add( newTriangle1 );
829  m_object_container.Add( newTriangle2 );
830 
831  newTriangle1->SetMaterial( (const CMATERIAL *)&m_materials.m_Floor );
832  newTriangle2->SetMaterial( (const CMATERIAL *)&m_materials.m_Floor );
833 
836  }
837  }
838  }
839 
840 
841  // Init initial lights
842  // /////////////////////////////////////////////////////////////////////////
843  m_lights.Clear();
844 
845  // This will work as the front camera light.
846  const float light_camera_intensity = 0.20;
847  const float light_top_bottom = 0.25;
848  const float light_directional_intensity = ( 1.0f - ( light_camera_intensity +
849  light_top_bottom * 0.5f ) ) / 4.0f;
850 
851  m_camera_light = new CDIRECTIONALLIGHT( SFVEC3F( 0.0f, 0.0f, 0.0f ),
852  SFVEC3F( light_camera_intensity ) );
853  m_camera_light->SetCastShadows( false );
855 
856  // Option 1 - using Point Lights
857 
858  const SFVEC3F &boarCenter = m_settings.GetBBox3DU().GetCenter();
859 
860  m_lights.Add( new CPOINTLIGHT( SFVEC3F( boarCenter.x, boarCenter.y, +RANGE_SCALE_3D * 2.0f ),
861  SFVEC3F( light_top_bottom ) ) );
862 
863  m_lights.Add( new CPOINTLIGHT( SFVEC3F( boarCenter.x, boarCenter.y, -RANGE_SCALE_3D * 2.0f ),
864  SFVEC3F( light_top_bottom ) ) );
865 
866 
867  // http://www.flashandmath.com/mathlets/multicalc/coords/shilmay23fin.html
868 
869  // Option 2 - Top/Bottom direction lights
870  /*
871  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 0.03f,
872  glm::pi<float>() * 0.25f ),
873  SFVEC3F( light_top_bottom ) ) );
874 
875  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 0.97f,
876  glm::pi<float>() * 1.25f ),
877  SFVEC3F( light_top_bottom ) ) );
878  */
879 
880  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
881  glm::pi<float>() * 1 / 4.0f ),
882  SFVEC3F( light_directional_intensity ) ) );
883  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
884  glm::pi<float>() * 3 / 4.0f ),
885  SFVEC3F( light_directional_intensity ) ) );
886  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
887  glm::pi<float>() * 5 / 4.0f ),
888  SFVEC3F( light_directional_intensity ) ) );
889  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 1.0f / 8.0f,
890  glm::pi<float>() * 7 / 4.0f ),
891  SFVEC3F( light_directional_intensity ) ) );
892 
893 
894  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
895  glm::pi<float>() * 1 / 4.0f ),
896  SFVEC3F( light_directional_intensity ) ) );
897  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
898  glm::pi<float>() * 3 / 4.0f ),
899  SFVEC3F( light_directional_intensity ) ) );
900  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
901  glm::pi<float>() * 5 / 4.0f ),
902  SFVEC3F( light_directional_intensity ) ) );
903  m_lights.Add( new CDIRECTIONALLIGHT( SphericalToCartesian( glm::pi<float>() * 7.0f / 8.0f,
904  glm::pi<float>() * 7 / 4.0f ),
905  SFVEC3F( light_directional_intensity ) ) );
906 
907 
908  // Create an accelerator
909  // /////////////////////////////////////////////////////////////////////////
910 
911 #ifdef PRINT_STATISTICS_3D_VIEWER
912  unsigned stats_startAcceleratorTime = GetRunningMicroSecs();
913 #endif
914 
915  if( m_accelerator )
916  {
917  delete m_accelerator;
918  }
919  m_accelerator = 0;
920 
921  //m_accelerator = new CGRID( m_object_container );
923 
924 #ifdef PRINT_STATISTICS_3D_VIEWER
925  unsigned stats_endAcceleratorTime = GetRunningMicroSecs();
926 #endif
927 
928  setupMaterials();
929 
930 #ifdef PRINT_STATISTICS_3D_VIEWER
931  printf( "C3D_RENDER_RAYTRACING::reload times:\n" );
932  printf( " Reload board: %.3f ms\n", (float)( stats_endReloadTime -
933  stats_startReloadTime ) /
934 
935  1000.0f );
936  printf( " Convert to 3D objects: %.3f ms\n", (float)( stats_endConvertTime -
937  stats_startConvertTime ) /
938  1000.0f );
939  printf( " Accelerator construction: %.3f ms\n", (float)( stats_endAcceleratorTime -
940  stats_startAcceleratorTime ) /
941  1000.0f );
942  printf( " Load and add 3D models: %.3f ms\n", (float)( stats_endLoad3DmodelsTime -
943  stats_startLoad3DmodelsTime ) /
944  1000.0f );
945  printf( "Optimizations\n" );
946 
947  printf( " m_stats_converted_dummy_to_plane: %u\n",
949 
950  printf( " m_stats_converted_roundsegment2d_to_roundsegment: %u\n",
952 
955 #endif
956 
957  if( aStatusTextReporter )
958  {
959  // Calculation time in seconds
960  const double calculation_time = (double)( GetRunningMicroSecs() -
961  stats_startReloadTime ) / 1e6;
962 
963  aStatusTextReporter->Report( wxString::Format( _( "Reload time %.3f s" ),
964  calculation_time ) );
965  }
966 }
void GetListObjectsIntersects(const CBBOX2D &aBBox, CONST_LIST_OBJECT2D &aOutList) const override
GetListObjectsIntersects - Get a list of objects that intersects a bbox.
const LIST_OBJECT2D & GetList() const
Definition: ccontainer2d.h:62
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
Directional light - a light based only on a direction vector.
Definition: clight.h:114
void PrintStats()
Definition: cobject2d.cpp:60
Class BOARD_ITEM is a base class for any item which can be embedded within the BOARD container class...
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
const SHAPE_POLY_SET & GetBoardPoly() const
GetBoardPoly - Get the current polygon of the epoxy board.
Definition: cinfo3d_visu.h:252
float GetLayerBottomZpos3DU(LAYER_ID aLayerId) const
GetLayerBottomZpos3DU - Get the bottom z position.
Definition: cinfo3d_visu.h:287
void create_3d_object_from(CCONTAINER &aDstContainer, const COBJECT2D *aObject2D, float aZMin, float aZMax, const CMATERIAL *aMaterial, const SFVEC3F &aObjColor)
Function create_3d_object_from.
std::list< const COBJECT2D * > CONST_LIST_OBJECT2D
Definition: ccontainer2d.h:37
const BOARD_ITEM & GetBoardItem() const
Definition: cobject2d.h:75
const SFVEC3F & Min() const
Function Min return the minimun vertex pointer.
Definition: cbbox.h:205
void SetMaterial(const CMATERIAL *aMaterial)
Definition: cobject.h:62
bool IsInitialized() const
Function IsInitialized check if this bounding box is already initialized.
Definition: cbbox.cpp:87
#define RANGE_SCALE_3D
This defines the range that all coord will have to be rendered.
Definition: cinfo3d_visu.h:63
float GetStats_Med_Via_Hole_Diameter3DU() const
GetStats_Med_Via_Hole_Diameter3DU - Average diameter of the via holes.
Definition: cinfo3d_visu.h:374
void PrintStats()
Definition: cobject.cpp:57
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
SFVEC3D m_BoardBodyColor
in realistic mode: FR4 board color
Definition: cinfo3d_visu.h:505
unsigned int m_stats_converted_dummy_to_plane
#define CSGITEM_EMPTY
This class is used to make constructive solig geometry for items objects on layers.
CGENERICACCELERATOR * m_accelerator
void SetColor(const SFVEC3F &aColor)
Definition: ctriangle.cpp:161
const MAP_CONTAINER_2D & GetMapLayersHoles() const
GetMapLayersHoles -Get the map of container that have the holes per layer.
Definition: cinfo3d_visu.h:299
void SetColor(SFVEC3F aObjColor)
Definition: ccylinder.h:50
const SFVEC3F & GetBoardCenter3DU() const
GetBoardCenter - the board center position in 3d units.
Definition: cinfo3d_visu.h:189
float NextFloatDown(float v)
Definition: 3d_fastmath.h:157
Class SHAPE_POLY_SET.
CCONTAINER2D m_containerWithObjectsToDelete
This will store the list of created objects special for RT, that will be clear in the end...
void Add(CLIGHT *aLight)
Add - Add a light to the container.
Definition: clight.h:186
OBJECT2D_TYPE GetObjectType() const
Definition: cobject2d.h:125
Point light based on: http://ogldev.atspace.co.uk/www/tutorial20/tutorial20.html. ...
Definition: clight.h:67
unsigned int m_stats_converted_roundsegment2d_to_roundsegment
#define CSGITEM_FULL
void SetColor(SFVEC3F aObjColor)
Definition: clayeritem.h:46
SFVEC3D m_SolderPasteColor
in realistic mode: solder paste color
Definition: cinfo3d_visu.h:507
A triangle object.
Definition: ctriangle.h:42
CDIRECTIONALLIGHT * m_camera_light
void Add(COBJECT *aObject)
Definition: ccontainer.h:52
SFVEC3D m_SolderMaskColor
in realistic mode: solder mask color
Definition: cinfo3d_visu.h:506
const CBBOX & GetBBox() const
Definition: ccontainer.h:67
void Fracture(POLYGON_MODE aFastMode)
Converts a set of polygons with holes to a singe outline with "slits"/"fractures" connecting the oute...
static COBJECT2D_STATS & Instance()
Definition: cobject2d.h:146
void Scale(float aScale)
Function Scale scales a bounding box by its center.
Definition: cbbox.cpp:194
A vertical cylinder.
Definition: ccylinder.h:38
SFVEC3F GetCenter() const
Function GetCenter return the center point of the bounding box.
Definition: cbbox.cpp:135
float GetLayerTopZpos3DU(LAYER_ID aLayerId) const
GetLayerTopZpos3DU - Get the top z position.
Definition: cinfo3d_visu.h:280
void ResetStats()
Definition: cobject.h:106
void Add(COBJECT2D *aObject)
Definition: ccontainer2d.h:51
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
const SFVEC2F & GetCentroid() const
Definition: cobject2d.h:123
SFVEC3D m_SilkScreenColor
in realistic mode: SilkScreen color
Definition: cinfo3d_visu.h:508
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
std::list< COBJECT2D * > LIST_OBJECT2D
Definition: ccontainer2d.h:36
LAYER_ID
Enum LAYER_ID is the set of PCB layers.
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
float NextFloatUp(float v)
Definition: 3d_fastmath.h:136
void SetBoardLookAtPos(const SFVEC3F &aBoardPos)
Definition: ccamera.h:115
static COBJECT3D_STATS & Instance()
Definition: cobject.h:116
void SetCastShadows(bool aCastShadow)
Definition: clight.h:57
SFVEC3F SphericalToCartesian(float aInclination, float aAzimuth)
SphericalToCartesian.
Definition: 3d_math.h:43
void ResetStats()
Definition: cobject2d.h:135
unsigned int GetStats_Nr_Vias() const
GetStats_Nr_Vias - Get statistics of the nr of vias.
Definition: cinfo3d_visu.h:362
const CBBOX2D & GetBBox() const
Definition: cobject2d.h:121
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
std::map< LAYER_ID, CBVHCONTAINER2D * > MAP_CONTAINER_2D
A type that stores a container of 2d objects for each layer id.
Definition: cinfo3d_visu.h:55
CCONTAINER2D * m_outlineBoard2dObjects
SFVEC3F GetLayerColor(LAYER_ID aLayerId) const
GetLayerColor - get the technical color of a layer.
const CBVHCONTAINER2D & GetThroughHole_Outer() const
GetThroughHole_Outer - Get the inflated ThroughHole container.
Definition: cinfo3d_visu.h:305
float GetStats_Med_Hole_Diameter3DU() const
GetStats_Med_Hole_Diameter3DU - Average diameter of holes.
Definition: cinfo3d_visu.h:380
void Clear()
Clear - Remove all lights from the container.
Definition: clight.h:165
SFVEC2F GetExtent() const
Function GetExtent.
Definition: cbbox2d.cpp:127
virtual bool Intersects(const CBBOX2D &aBBox) const =0
Function Intersects.
Class CBBOX manages a bounding box defined by two SFVEC3F min max points.
Definition: cbbox.h:40
MAP_MODEL_MATERIALS m_model_materials
Stores materials of the 3D models.
struct C3D_RENDER_RAYTRACING::@41 m_materials
const BOARD * GetBoard() const
GetBoard - Get current board to be rendered.
Definition: cinfo3d_visu.h:128
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
const LIST_OBJECT & GetList() const
Definition: ccontainer.h:63
const MAP_CONTAINER_2D & GetMapLayers() const
GetMapLayers - Get the map of container that have the objects per layer.
Definition: cinfo3d_visu.h:293
#define min(a, b)
Definition: auxiliary.h:85
void InitSettings(REPORTER *aStatusTextReporter)
InitSettings - Function to be called by the render when it need to reload the settings for the board...
void Convert_path_polygon_to_polygon_blocks_and_dummy_blocks(const SHAPE_POLY_SET &aMainPath, CGENERICCONTAINER2D &aDstContainer, float aBiuTo3DunitsScale, float aDivFactor, const BOARD_ITEM &aBoardItem)
Convert_path_polygon_to_polygon_blocks_and_dummy_blocks This function will use a polygon in the forma...
Definition: cpolygon2d.cpp:406
unsigned int GetStats_Nr_Holes() const
GetStats_Nr_Holes - Get statistics of the nr of holes.
Definition: cinfo3d_visu.h:368
const CBBOX & GetBBox3DU() const
GetBBox3DU - Get the bbox of the pcb board.
Definition: cinfo3d_visu.h:147
void C3D_RENDER_BASE::ReloadRequest ( )
inlineinherited

ReloadRequest - !TODO: this must be reviewed to add flags to improve specific render.

Definition at line 73 of file c3d_render_base.h.

References C3D_RENDER_BASE::m_reloadRequested.

Referenced by EDA_3D_CANVAS::ReloadRequest(), EDA_3D_CANVAS::RenderEngineChanged(), and EDA_3D_CANVAS::RenderRaytracingRequest().

73 { m_reloadRequested = true; }
bool m_reloadRequested
!TODO: this must be reviewed in order to flag change types
void C3D_RENDER_RAYTRACING::render ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 298 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), ConvertSRGBToLinear(), Format(), CCAMERA::GetDir(), GetRunningMicroSecs(), CINFO3D_VISU::m_BgColorBot, m_BgColorBot_LinearRGB, CINFO3D_VISU::m_BgColorTop, m_BgColorTop_LinearRGB, m_camera_light, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_stats_start_rendering_time, RENDER_ENGINE_OPENGL_LEGACY, CINFO3D_VISU::RenderEngineGet(), REPORTER::Report(), restart_render_state(), rt_render_post_process_blur_finish(), rt_render_post_process_shade(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_MAX, RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH, RT_RENDER_STATE_POST_PROCESS_SHADE, RT_RENDER_STATE_TRACING, rt_render_tracing(), and CDIRECTIONALLIGHT::SetDirection().

Referenced by Redraw().

299 {
302  {
304 
305  if( m_camera_light )
307 
309  {
310  // Set all pixels of PBO transparent (Alpha to 0)
311  // This way it will draw the full buffer but only shows the updated (
312  // already calculated) squares
313  // /////////////////////////////////////////////////////////////////////
314  unsigned int nPixels = m_realBufferSize.x * m_realBufferSize.y;
315  GLubyte *tmp_ptrPBO = ptrPBO + 3; // PBO is RGBA
316 
317  for( unsigned int i = 0; i < nPixels; ++i )
318  {
319  *tmp_ptrPBO = 0;
320  tmp_ptrPBO += 4; // PBO is RGBA
321  }
322  }
323 
326  }
327 
328  switch( m_rt_render_state )
329  {
331  rt_render_tracing( ptrPBO, aStatusTextReporter );
332  break;
333 
335  rt_render_post_process_shade( ptrPBO, aStatusTextReporter );
336  break;
337 
339  rt_render_post_process_blur_finish( ptrPBO, aStatusTextReporter );
340  break;
341 
342  default:
343  wxASSERT_MSG( false, "Invalid state on m_rt_render_state");
345  break;
346  }
347 
348  if( aStatusTextReporter && (m_rt_render_state == RT_RENDER_STATE_FINISH) )
349  {
350  // Calculation time in seconds
351  const double calculation_time = (double)( GetRunningMicroSecs() -
353 
354  aStatusTextReporter->Report( wxString::Format( _( "Rendering time %.3f s" ),
355  calculation_time ) );
356  }
357 }
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
void rt_render_post_process_shade(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
const SFVEC3F & GetDir() const
Definition: ccamera.h:109
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
RT_RENDER_STATE m_rt_render_state
State used on quality render.
void rt_render_tracing(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
void rt_render_post_process_blur_finish(GLubyte *ptrPBO, REPORTER *aStatusTextReporter)
CDIRECTIONALLIGHT * m_camera_light
RENDER_ENGINE RenderEngineGet() const
RenderEngineGet.
Definition: cinfo3d_visu.h:234
void SetDirection(const SFVEC3F &aDir)
SetDirection - Set directional light orientation.
Definition: clight.h:129
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
unsigned long int m_stats_start_rendering_time
Time that the render starts.
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void C3D_RENDER_RAYTRACING::render_preview ( GLubyte *  ptrPBO)
private

Definition at line 1086 of file c3d_render_raytracing.cpp.

References BlendColor(), CINFO3D_VISU::CameraGet(), RAY::Init(), CGENERICACCELERATOR::Intersect(), COBJECT::Intersect(), m_accelerator, CINFO3D_VISU::m_BgColorBot, CINFO3D_VISU::m_BgColorTop, m_blockPositionsFast, HITINFO_PACKET::m_HitInfo, HITINFO::m_HitNormal, m_isPreview, m_realBufferSize, C3D_RENDER_BASE::m_settings, HITINFO::m_tHit, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, HITINFO::pHitObject, RAYPACKET_DIM, RAYPACKET_RAYS_PER_PACKET, SetPixel(), and shadeHit().

Referenced by Redraw().

1087 {
1088  m_isPreview = true;
1089 
1090  unsigned int nrBlocks = m_blockPositionsFast.size();
1091 
1092  #pragma omp parallel for schedule(dynamic)
1093  for( signed int iBlock = 0; iBlock < (int)nrBlocks; iBlock++ )
1094  {
1095  const SFVEC2UI &windowPosUI = m_blockPositionsFast[ iBlock ];
1096  const SFVEC2I windowsPos = SFVEC2I( windowPosUI.x + m_xoffset,
1097  windowPosUI.y + m_yoffset );
1098 
1099  RAYPACKET blockPacket( m_settings.CameraGet(), windowsPos, 4 );
1100 
1102 
1103  // Initialize hitPacket with a "not hit" information
1104  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
1105  {
1106  hitPacket[i].m_HitInfo.m_tHit = std::numeric_limits<float>::infinity();
1107  hitPacket[i].m_HitInfo.m_acc_node_info = 0;
1108  hitPacket[i].m_hitresult = false;
1109  }
1110 
1111  // Intersect packet block
1112  m_accelerator->Intersect( blockPacket, hitPacket );
1113 
1114 
1115  // Calculate background gradient color
1116  // /////////////////////////////////////////////////////////////////////
1117  SFVEC3F bgColor[RAYPACKET_DIM];
1118 
1119  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
1120  {
1121  const float posYfactor = (float)(windowsPos.y + y * 4.0f) / (float)m_windowSize.y;
1122 
1123  bgColor[y] = (SFVEC3F)m_settings.m_BgColorTop * SFVEC3F(posYfactor) +
1124  (SFVEC3F)m_settings.m_BgColorBot * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) );
1125  }
1126 
1127  CCOLORRGB hitColorShading[RAYPACKET_RAYS_PER_PACKET];
1128 
1129  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
1130  {
1131  const SFVEC3F bhColorY = bgColor[i / RAYPACKET_DIM];
1132 
1133  if( hitPacket[i].m_hitresult == true )
1134  {
1135  const SFVEC3F hitColor = shadeHit( bhColorY,
1136  blockPacket.m_ray[i],
1137  hitPacket[i].m_HitInfo,
1138  false,
1139  0,
1140  false );
1141 
1142  hitColorShading[i] = CCOLORRGB( hitColor );
1143  }
1144  else
1145  hitColorShading[i] = bhColorY;
1146  }
1147 
1148  CCOLORRGB cLRB_old[(RAYPACKET_DIM - 1)];
1149 
1150  for( unsigned int y = 0; y < (RAYPACKET_DIM - 1); ++y )
1151  {
1152 
1153  const SFVEC3F bgColorY = bgColor[y];
1154  const CCOLORRGB bgColorYRGB = CCOLORRGB( bgColorY );
1155 
1156  // This stores cRTB from the last block to be reused next time in a cLTB pixel
1157  CCOLORRGB cRTB_old;
1158 
1159  //RAY cRTB_ray;
1160  //HITINFO cRTB_hitInfo;
1161 
1162  for( unsigned int x = 0; x < (RAYPACKET_DIM - 1); ++x )
1163  {
1164  // pxl 0 pxl 1 pxl 2 pxl 3 pxl 4
1165  // x0 x1 ...
1166  // .---------------------------.
1167  // y0 | cLT | cxxx | cLRT | cxxx | cRT |
1168  // | cxxx | cLTC | cxxx | cRTC | cxxx |
1169  // | cLTB | cxxx | cC | cxxx | cRTB |
1170  // | cxxx | cLBC | cxxx | cRBC | cxxx |
1171  // '---------------------------'
1172  // y1 | cLB | cxxx | cLRB | cxxx | cRB |
1173 
1174  const unsigned int iLT = ((x + 0) + RAYPACKET_DIM * (y + 0));
1175  const unsigned int iRT = ((x + 1) + RAYPACKET_DIM * (y + 0));
1176  const unsigned int iLB = ((x + 0) + RAYPACKET_DIM * (y + 1));
1177  const unsigned int iRB = ((x + 1) + RAYPACKET_DIM * (y + 1));
1178 
1179  // !TODO: skip when there are no hits
1180 
1181 
1182  const CCOLORRGB &cLT = hitColorShading[ iLT ];
1183  const CCOLORRGB &cRT = hitColorShading[ iRT ];
1184  const CCOLORRGB &cLB = hitColorShading[ iLB ];
1185  const CCOLORRGB &cRB = hitColorShading[ iRB ];
1186 
1187  // Trace and shade cC
1188  // /////////////////////////////////////////////////////////////
1189  CCOLORRGB cC = bgColorYRGB;
1190 
1191  const SFVEC3F &oriLT = blockPacket.m_ray[ iLT ].m_Origin;
1192  const SFVEC3F &oriRB = blockPacket.m_ray[ iRB ].m_Origin;
1193 
1194  const SFVEC3F &dirLT = blockPacket.m_ray[ iLT ].m_Dir;
1195  const SFVEC3F &dirRB = blockPacket.m_ray[ iRB ].m_Dir;
1196 
1197  SFVEC3F oriC;
1198  SFVEC3F dirC;
1199 
1200  HITINFO centerHitInfo;
1201  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1202 
1203  bool hittedC = false;
1204 
1205  if( (hitPacket[ iLT ].m_hitresult == true) ||
1206  (hitPacket[ iRT ].m_hitresult == true) ||
1207  (hitPacket[ iLB ].m_hitresult == true) ||
1208  (hitPacket[ iRB ].m_hitresult == true) )
1209  {
1210 
1211  oriC = ( oriLT + oriRB ) * 0.5f;
1212  dirC = glm::normalize( ( dirLT + dirRB ) * 0.5f );
1213 
1214  // Trace the center ray
1215  RAY centerRay;
1216  centerRay.Init( oriC, dirC );
1217 
1218  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1219  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1220  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1221  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1222 
1223  if( nodeLT != 0 )
1224  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLT );
1225 
1226  if( ( nodeRT != 0 ) &&
1227  ( nodeRT != nodeLT ) )
1228  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRT );
1229 
1230  if( ( nodeLB != 0 ) &&
1231  ( nodeLB != nodeLT ) &&
1232  ( nodeLB != nodeRT ) )
1233  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeLB );
1234 
1235  if( ( nodeRB != 0 ) &&
1236  ( nodeRB != nodeLB ) &&
1237  ( nodeRB != nodeLT ) &&
1238  ( nodeRB != nodeRT ) )
1239  hittedC |= m_accelerator->Intersect( centerRay, centerHitInfo, nodeRB );
1240 
1241  if( hittedC )
1242  cC = CCOLORRGB( shadeHit( bgColorY, centerRay, centerHitInfo, false, 0, false ) );
1243  else
1244  {
1245  centerHitInfo.m_tHit = std::numeric_limits<float>::infinity();
1246  hittedC = m_accelerator->Intersect( centerRay, centerHitInfo );
1247 
1248  if( hittedC )
1249  cC = CCOLORRGB( shadeHit( bgColorY,
1250  centerRay,
1251  centerHitInfo,
1252  false,
1253  0,
1254  false ) );
1255  }
1256  }
1257 
1258  // Trace and shade cLRT
1259  // /////////////////////////////////////////////////////////////
1260  CCOLORRGB cLRT = bgColorYRGB;
1261 
1262  const SFVEC3F &oriRT = blockPacket.m_ray[ iRT ].m_Origin;
1263  const SFVEC3F &dirRT = blockPacket.m_ray[ iRT ].m_Dir;
1264 
1265  if( y == 0 )
1266  {
1267  // Trace the center ray
1268  RAY rayLRT;
1269  rayLRT.Init( ( oriLT + oriRT ) * 0.5f,
1270  glm::normalize( ( dirLT + dirRT ) * 0.5f ) );
1271 
1272  HITINFO hitInfoLRT;
1273  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1274 
1275  if( hitPacket[ iLT ].m_hitresult &&
1276  hitPacket[ iRT ].m_hitresult &&
1277  (hitPacket[ iLT ].m_HitInfo.pHitObject == hitPacket[ iRT ].m_HitInfo.pHitObject) )
1278  {
1279  hitInfoLRT.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1280  hitInfoLRT.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1281  hitPacket[ iRT ].m_HitInfo.m_tHit ) * 0.5f;
1282  hitInfoLRT.m_HitNormal =
1283  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1284  hitPacket[ iRT ].m_HitInfo.m_HitNormal ) * 0.5f );
1285 
1286  cLRT = CCOLORRGB( shadeHit( bgColorY, rayLRT, hitInfoLRT, false, 0, false ) );
1287  cLRT = BlendColor( cLRT, BlendColor( cLT, cRT) );
1288  }
1289  else
1290  {
1291  if( hitPacket[ iLT ].m_hitresult ||
1292  hitPacket[ iRT ].m_hitresult ) // If any hits
1293  {
1294  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1295  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1296 
1297  bool hittedLRT = false;
1298 
1299  if( nodeLT != 0 )
1300  hittedLRT |= m_accelerator->Intersect( rayLRT, hitInfoLRT, nodeLT );
1301 
1302  if( ( nodeRT != 0 ) &&
1303  ( nodeRT != nodeLT ) )
1304  hittedLRT |= m_accelerator->Intersect( rayLRT,
1305  hitInfoLRT,
1306  nodeRT );
1307 
1308  if( hittedLRT )
1309  cLRT = CCOLORRGB( shadeHit( bgColorY,
1310  rayLRT,
1311  hitInfoLRT,
1312  false,
1313  0,
1314  false ) );
1315  else
1316  {
1317  hitInfoLRT.m_tHit = std::numeric_limits<float>::infinity();
1318 
1319  if( m_accelerator->Intersect( rayLRT,hitInfoLRT ) )
1320  cLRT = CCOLORRGB( shadeHit( bgColorY,
1321  rayLRT,
1322  hitInfoLRT,
1323  false,
1324  0,
1325  false ) );
1326  }
1327  }
1328  }
1329  }
1330  else
1331  cLRT = cLRB_old[x];
1332 
1333 
1334  // Trace and shade cLTB
1335  // /////////////////////////////////////////////////////////////
1336  CCOLORRGB cLTB = bgColorYRGB;
1337 
1338  if( x == 0 )
1339  {
1340  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1341  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1342 
1343  // Trace the center ray
1344  RAY rayLTB;
1345  rayLTB.Init( ( oriLT + oriLB ) * 0.5f,
1346  glm::normalize( ( dirLT + dirLB ) * 0.5f ) );
1347 
1348  HITINFO hitInfoLTB;
1349  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1350 
1351  if( hitPacket[ iLT ].m_hitresult &&
1352  hitPacket[ iLB ].m_hitresult &&
1353  ( hitPacket[ iLT ].m_HitInfo.pHitObject ==
1354  hitPacket[ iLB ].m_HitInfo.pHitObject ) )
1355  {
1356  hitInfoLTB.pHitObject = hitPacket[ iLT ].m_HitInfo.pHitObject;
1357  hitInfoLTB.m_tHit = ( hitPacket[ iLT ].m_HitInfo.m_tHit +
1358  hitPacket[ iLB ].m_HitInfo.m_tHit ) * 0.5f;
1359  hitInfoLTB.m_HitNormal =
1360  glm::normalize( ( hitPacket[ iLT ].m_HitInfo.m_HitNormal +
1361  hitPacket[ iLB ].m_HitInfo.m_HitNormal ) * 0.5f );
1362  cLTB = CCOLORRGB( shadeHit( bgColorY, rayLTB, hitInfoLTB, false, 0, false ) );
1363  cLTB = BlendColor( cLTB, BlendColor( cLT, cLB) );
1364  }
1365  else
1366  {
1367  if( hitPacket[ iLT ].m_hitresult ||
1368  hitPacket[ iLB ].m_hitresult ) // If any hits
1369  {
1370  const unsigned int nodeLT = hitPacket[ iLT ].m_HitInfo.m_acc_node_info;
1371  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1372 
1373  bool hittedLTB = false;
1374 
1375  if( nodeLT != 0 )
1376  hittedLTB |= m_accelerator->Intersect( rayLTB,
1377  hitInfoLTB,
1378  nodeLT );
1379 
1380  if( ( nodeLB != 0 ) &&
1381  ( nodeLB != nodeLT ) )
1382  hittedLTB |= m_accelerator->Intersect( rayLTB,
1383  hitInfoLTB,
1384  nodeLB );
1385 
1386  if( hittedLTB )
1387  cLTB = CCOLORRGB( shadeHit( bgColorY,
1388  rayLTB,
1389  hitInfoLTB,
1390  false,
1391  0,
1392  false ) );
1393  else
1394  {
1395  hitInfoLTB.m_tHit = std::numeric_limits<float>::infinity();
1396 
1397  if( m_accelerator->Intersect( rayLTB, hitInfoLTB ) )
1398  cLTB = CCOLORRGB( shadeHit( bgColorY,
1399  rayLTB,
1400  hitInfoLTB,
1401  false,
1402  0,
1403  false ) );
1404  }
1405  }
1406  }
1407  }
1408  else
1409  cLTB = cRTB_old;
1410 
1411 
1412  // Trace and shade cRTB
1413  // /////////////////////////////////////////////////////////////
1414  CCOLORRGB cRTB = bgColorYRGB;
1415 
1416  // Trace the center ray
1417  RAY rayRTB;
1418  rayRTB.Init( ( oriRT + oriRB ) * 0.5f,
1419  glm::normalize( ( dirRT + dirRB ) * 0.5f ) );
1420 
1421  HITINFO hitInfoRTB;
1422  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1423 
1424  if( hitPacket[ iRT ].m_hitresult &&
1425  hitPacket[ iRB ].m_hitresult &&
1426  ( hitPacket[ iRT ].m_HitInfo.pHitObject ==
1427  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1428  {
1429  hitInfoRTB.pHitObject = hitPacket[ iRT ].m_HitInfo.pHitObject;
1430 
1431  hitInfoRTB.m_tHit = ( hitPacket[ iRT ].m_HitInfo.m_tHit +
1432  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1433 
1434  hitInfoRTB.m_HitNormal =
1435  glm::normalize( ( hitPacket[ iRT ].m_HitInfo.m_HitNormal +
1436  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1437 
1438  cRTB = CCOLORRGB( shadeHit( bgColorY, rayRTB, hitInfoRTB, false, 0, false ) );
1439  cRTB = BlendColor( cRTB, BlendColor( cRT, cRB) );
1440  }
1441  else
1442  {
1443  if( hitPacket[ iRT ].m_hitresult ||
1444  hitPacket[ iRB ].m_hitresult ) // If any hits
1445  {
1446  const unsigned int nodeRT = hitPacket[ iRT ].m_HitInfo.m_acc_node_info;
1447  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1448 
1449  bool hittedRTB = false;
1450 
1451  if( nodeRT != 0 )
1452  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRT );
1453 
1454  if( ( nodeRB != 0 ) &&
1455  ( nodeRB != nodeRT ) )
1456  hittedRTB |= m_accelerator->Intersect( rayRTB, hitInfoRTB, nodeRB );
1457 
1458  if( hittedRTB )
1459  cRTB = CCOLORRGB( shadeHit( bgColorY,
1460  rayRTB,
1461  hitInfoRTB,
1462  false,
1463  0,
1464  false) );
1465  else
1466  {
1467  hitInfoRTB.m_tHit = std::numeric_limits<float>::infinity();
1468 
1469  if( m_accelerator->Intersect( rayRTB, hitInfoRTB ) )
1470  cRTB = CCOLORRGB( shadeHit( bgColorY,
1471  rayRTB,
1472  hitInfoRTB,
1473  false,
1474  0,
1475  false ) );
1476  }
1477  }
1478  }
1479 
1480  cRTB_old = cRTB;
1481 
1482 
1483  // Trace and shade cLRB
1484  // /////////////////////////////////////////////////////////////
1485  CCOLORRGB cLRB = bgColorYRGB;
1486 
1487  const SFVEC3F &oriLB = blockPacket.m_ray[ iLB ].m_Origin;
1488  const SFVEC3F &dirLB = blockPacket.m_ray[ iLB ].m_Dir;
1489 
1490  // Trace the center ray
1491  RAY rayLRB;
1492  rayLRB.Init( ( oriLB + oriRB ) * 0.5f,
1493  glm::normalize( ( dirLB + dirRB ) * 0.5f ) );
1494 
1495  HITINFO hitInfoLRB;
1496  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1497 
1498  if( hitPacket[ iLB ].m_hitresult &&
1499  hitPacket[ iRB ].m_hitresult &&
1500  ( hitPacket[ iLB ].m_HitInfo.pHitObject ==
1501  hitPacket[ iRB ].m_HitInfo.pHitObject ) )
1502  {
1503  hitInfoLRB.pHitObject = hitPacket[ iLB ].m_HitInfo.pHitObject;
1504 
1505  hitInfoLRB.m_tHit = ( hitPacket[ iLB ].m_HitInfo.m_tHit +
1506  hitPacket[ iRB ].m_HitInfo.m_tHit ) * 0.5f;
1507 
1508  hitInfoLRB.m_HitNormal =
1509  glm::normalize( ( hitPacket[ iLB ].m_HitInfo.m_HitNormal +
1510  hitPacket[ iRB ].m_HitInfo.m_HitNormal ) * 0.5f );
1511 
1512  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1513  cLRB = BlendColor( cLRB, BlendColor( cLB, cRB) );
1514  }
1515  else
1516  {
1517  if( hitPacket[ iLB ].m_hitresult ||
1518  hitPacket[ iRB ].m_hitresult ) // If any hits
1519  {
1520  const unsigned int nodeLB = hitPacket[ iLB ].m_HitInfo.m_acc_node_info;
1521  const unsigned int nodeRB = hitPacket[ iRB ].m_HitInfo.m_acc_node_info;
1522 
1523  bool hittedLRB = false;
1524 
1525  if( nodeLB != 0 )
1526  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeLB );
1527 
1528  if( ( nodeRB != 0 ) &&
1529  ( nodeRB != nodeLB ) )
1530  hittedLRB |= m_accelerator->Intersect( rayLRB, hitInfoLRB, nodeRB );
1531 
1532  if( hittedLRB )
1533  cLRB = CCOLORRGB( shadeHit( bgColorY, rayLRB, hitInfoLRB, false, 0, false ) );
1534  else
1535  {
1536  hitInfoLRB.m_tHit = std::numeric_limits<float>::infinity();
1537 
1538  if( m_accelerator->Intersect( rayLRB, hitInfoLRB ) )
1539  cLRB = CCOLORRGB( shadeHit( bgColorY,
1540  rayLRB,
1541  hitInfoLRB,
1542  false,
1543  0,
1544  false ) );
1545  }
1546  }
1547  }
1548 
1549  cLRB_old[x] = cLRB;
1550 
1551 
1552  // Trace and shade cLTC
1553  // /////////////////////////////////////////////////////////////
1554  CCOLORRGB cLTC = BlendColor( cLT , cC );
1555 
1556  if( hitPacket[ iLT ].m_hitresult || hittedC )
1557  {
1558  // Trace the center ray
1559  RAY rayLTC;
1560  rayLTC.Init( ( oriLT + oriC ) * 0.5f,
1561  glm::normalize( ( dirLT + dirC ) * 0.5f ) );
1562 
1563  HITINFO hitInfoLTC;
1564  hitInfoLTC.m_tHit = std::numeric_limits<float>::infinity();
1565 
1566  bool hitted = false;
1567 
1568  if( hittedC )
1569  hitted = centerHitInfo.pHitObject->Intersect( rayLTC, hitInfoLTC );
1570  else
1571  if( hitPacket[ iLT ].m_hitresult )
1572  hitted = hitPacket[ iLT ].m_HitInfo.pHitObject->Intersect( rayLTC,
1573  hitInfoLTC );
1574 
1575  if( hitted )
1576  cLTC = CCOLORRGB( shadeHit( bgColorY, rayLTC, hitInfoLTC, false, 0, false ) );
1577  }
1578 
1579 
1580  // Trace and shade cRTC
1581  // /////////////////////////////////////////////////////////////
1582  CCOLORRGB cRTC = BlendColor( cRT , cC );
1583 
1584  if( hitPacket[ iRT ].m_hitresult || hittedC )
1585  {
1586  // Trace the center ray
1587  RAY rayRTC;
1588  rayRTC.Init( ( oriRT + oriC ) * 0.5f,
1589  glm::normalize( ( dirRT + dirC ) * 0.5f ) );
1590 
1591  HITINFO hitInfoRTC;
1592  hitInfoRTC.m_tHit = std::numeric_limits<float>::infinity();
1593 
1594  bool hitted = false;
1595 
1596  if( hittedC )
1597  hitted = centerHitInfo.pHitObject->Intersect( rayRTC, hitInfoRTC );
1598  else
1599  if( hitPacket[ iRT ].m_hitresult )
1600  hitted = hitPacket[ iRT ].m_HitInfo.pHitObject->Intersect( rayRTC,
1601  hitInfoRTC );
1602 
1603  if( hitted )
1604  cRTC = CCOLORRGB( shadeHit( bgColorY, rayRTC, hitInfoRTC, false, 0, false ) );
1605  }
1606 
1607 
1608  // Trace and shade cLBC
1609  // /////////////////////////////////////////////////////////////
1610  CCOLORRGB cLBC = BlendColor( cLB , cC );
1611 
1612  if( hitPacket[ iLB ].m_hitresult || hittedC )
1613  {
1614  // Trace the center ray
1615  RAY rayLBC;
1616  rayLBC.Init( ( oriLB + oriC ) * 0.5f,
1617  glm::normalize( ( dirLB + dirC ) * 0.5f ) );
1618 
1619  HITINFO hitInfoLBC;
1620  hitInfoLBC.m_tHit = std::numeric_limits<float>::infinity();
1621 
1622  bool hitted = false;
1623 
1624  if( hittedC )
1625  hitted = centerHitInfo.pHitObject->Intersect( rayLBC, hitInfoLBC );
1626  else
1627  if( hitPacket[ iLB ].m_hitresult )
1628  hitted = hitPacket[ iLB ].m_HitInfo.pHitObject->Intersect( rayLBC,
1629  hitInfoLBC );
1630 
1631  if( hitted )
1632  cLBC = CCOLORRGB( shadeHit( bgColorY, rayLBC, hitInfoLBC, false, 0, false ) );
1633  }
1634 
1635 
1636  // Trace and shade cRBC
1637  // /////////////////////////////////////////////////////////////
1638  CCOLORRGB cRBC = BlendColor( cRB , cC );
1639 
1640  if( hitPacket[ iRB ].m_hitresult || hittedC )
1641  {
1642  // Trace the center ray
1643  RAY rayRBC;
1644  rayRBC.Init( ( oriRB + oriC ) * 0.5f,
1645  glm::normalize( ( dirRB + dirC ) * 0.5f ) );
1646 
1647  HITINFO hitInfoRBC;
1648  hitInfoRBC.m_tHit = std::numeric_limits<float>::infinity();
1649 
1650  bool hitted = false;
1651 
1652  if( hittedC )
1653  hitted = centerHitInfo.pHitObject->Intersect( rayRBC, hitInfoRBC );
1654  else
1655  if( hitPacket[ iRB ].m_hitresult )
1656  hitted = hitPacket[ iRB ].m_HitInfo.pHitObject->Intersect( rayRBC,
1657  hitInfoRBC );
1658 
1659  if( hitted )
1660  cRBC = CCOLORRGB( shadeHit( bgColorY, rayRBC, hitInfoRBC, false, 0, false ) );
1661  }
1662 
1663 
1664  // Set pixel colors
1665  // /////////////////////////////////////////////////////////////
1666 
1667  GLubyte *ptr = &ptrPBO[ (4 * x + m_blockPositionsFast[iBlock].x +
1668  m_realBufferSize.x *
1669  (m_blockPositionsFast[iBlock].y + 4 * y)) * 4 ];
1670  SetPixel( ptr + 0, cLT );
1671  SetPixel( ptr + 4, BlendColor( cLT, cLRT, cLTC ) );
1672  SetPixel( ptr + 8, cLRT );
1673  SetPixel( ptr + 12, BlendColor( cLRT, cRT, cRTC ) );
1674 
1675  ptr += m_realBufferSize.x * 4;
1676  SetPixel( ptr + 0, BlendColor( cLT , cLTB, cLTC ) );
1677  SetPixel( ptr + 4, BlendColor( cLTC, BlendColor( cLT , cC ) ) );
1678  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRT, cLTC, cRTC ) ) );
1679  SetPixel( ptr + 12, BlendColor( cRTC, BlendColor( cRT , cC ) ) );
1680 
1681  ptr += m_realBufferSize.x * 4;
1682  SetPixel( ptr + 0, cLTB );
1683  SetPixel( ptr + 4, BlendColor( cC, BlendColor( cLTB, cLTC, cLBC ) ) );
1684  SetPixel( ptr + 8, cC );
1685  SetPixel( ptr + 12, BlendColor( cC, BlendColor( cRTB, cRTC, cRBC ) ) );
1686 
1687  ptr += m_realBufferSize.x * 4;
1688  SetPixel( ptr + 0, BlendColor( cLB , cLTB, cLBC ) );
1689  SetPixel( ptr + 4, BlendColor( cLBC, BlendColor( cLB , cC ) ) );
1690  SetPixel( ptr + 8, BlendColor( cC, BlendColor( cLRB, cLBC, cRBC ) ) );
1691  SetPixel( ptr + 12, BlendColor( cRBC, BlendColor( cRB , cC ) ) );
1692  }
1693  }
1694  }
1695 
1696  // Wait for all threads to finish (not sure if this is need)
1697  #pragma omp barrier
1698 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
void Init(const SFVEC3F &o, const SFVEC3F &d)
Definition: ray.cpp:38
SFVEC3D m_BgColorBot
background bottom color
Definition: cinfo3d_visu.h:503
Definition: ray.h:43
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
float m_tHit
( 4) distance
Definition: hitinfo.h:43
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
CGENERICACCELERATOR * m_accelerator
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
HITINFO m_HitInfo
Definition: hitinfo.h:63
wxSize m_windowSize
The window size that this camera is working.
const COBJECT * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:45
std::vector< SFVEC2UI > m_blockPositionsFast
this encodes the Morton code positions (on fast preview mode)
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
Functions Intersect.
static void SetPixel(GLubyte *p, const CCOLORRGB &v)
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
#define RAYPACKET_RAYS_PER_PACKET
Definition: raypacket.h:40
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
CCOLORRGB BlendColor(const CCOLORRGB &aC1, const CCOLORRGB &aC2)
Definition: ccolorrgb.cpp:42
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:42
void C3D_RENDER_RAYTRACING::restart_render_state ( )
private

Definition at line 124 of file c3d_render_raytracing.cpp.

References GetRunningMicroSecs(), CPOSTSHADER::InitFrame(), m_blockPositions, m_blockPositionsWasProcessed, m_nrBlocksRenderProgress, m_postshader_ssao, m_rt_render_state, m_stats_start_rendering_time, and RT_RENDER_STATE_TRACING.

Referenced by render().

125 {
127 
130 
132 
134 
135  // Mark the blocks not processed yet
136  std::fill( m_blockPositionsWasProcessed.begin(),
138  false );
139 }
std::vector< bool > m_blockPositionsWasProcessed
this flags if a position was already processed (cleared each new render)
long m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
CPOSTSHADER_SSAO m_postshader_ssao
RT_RENDER_STATE m_rt_render_state
State used on quality render.
void InitFrame()
Definition: cpostshader.h:54
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
unsigned long int m_stats_start_rendering_time
Time that the render starts.
void C3D_RENDER_RAYTRACING::rt_final_color ( GLubyte *  ptrPBO,
const SFVEC3F rgbColor,
bool  applyColorSpaceConversion 
)
private

Definition at line 464 of file c3d_render_raytracing.cpp.

References convertLinearToSRGB().

Referenced by rt_render_post_process_blur_finish(), and rt_render_trace_block().

467 {
468 
469  SFVEC3F color = rgbColor;
470 
471 #ifdef USE_SRGB_SPACE
472 
473  // This should be used in future when the KiCad support a greater version of
474  // glm lib.
475  // if( applyColorSpaceConversion )
476  // rgbColor = glm::convertLinearToSRGB( rgbColor );
477 
478  if( applyColorSpaceConversion )
479  color = convertLinearToSRGB( rgbColor );
480 #endif
481 
482  ptrPBO[0] = (unsigned int)glm::clamp( (int)(color.r * 255), 0, 255 );
483  ptrPBO[1] = (unsigned int)glm::clamp( (int)(color.g * 255), 0, 255 );
484  ptrPBO[2] = (unsigned int)glm::clamp( (int)(color.b * 255), 0, 255 );
485  ptrPBO[3] = 255;
486 }
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
static SFVEC3F convertLinearToSRGB(const SFVEC3F &aRGBcolor)
void C3D_RENDER_RAYTRACING::rt_render_post_process_blur_finish ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 952 of file c3d_render_raytracing.cpp.

References CPOSTSHADER_SSAO::ApplyShadeColor(), convertLinearToSRGB(), FL_RENDER_RAYTRACING_POST_PROCESSING, CPOSTSHADER::GetColorAtNotProtected(), CINFO3D_VISU::GetFlag(), m_postshader_ssao, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_shaderBuffer, max, min, rt_final_color(), and RT_RENDER_STATE_FINISH.

Referenced by render().

954 {
955  (void)aStatusTextReporter; //unused
956 
958  {
959  // Now blurs the shader result and compute the final color
960  #pragma omp parallel for schedule(dynamic)
961  for( signed int y = 0; y < (int)m_realBufferSize.y; ++y )
962  {
963  GLubyte *ptr = &ptrPBO[ y * m_realBufferSize.x * 4 ];
964 
965  SFVEC3F *ptrShaderY0 =
966  &m_shaderBuffer[ glm::max((int)y - 2, 0) * m_realBufferSize.x ];
967  SFVEC3F *ptrShaderY1 =
968  &m_shaderBuffer[ glm::max((int)y - 1, 0) * m_realBufferSize.x ];
969  SFVEC3F *ptrShaderY2 =
971  SFVEC3F *ptrShaderY3 =
972  &m_shaderBuffer[ glm::min((int)y + 1, (int)(m_realBufferSize.y - 1)) *
973  m_realBufferSize.x ];
974  SFVEC3F *ptrShaderY4 =
975  &m_shaderBuffer[ glm::min((int)y + 2, (int)(m_realBufferSize.y - 1)) *
976  m_realBufferSize.x ];
977 
978  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
979  {
980 // This #if should be 1, it is here that can be used for debug proposes during development
981 #if 1
982 
983  SFVEC3F bluredShadeColor = (*ptrShaderY0) * 1.0f / 273.0f +
984  (*ptrShaderY1) * 4.0f / 273.0f +
985  (*ptrShaderY2) * 7.0f / 273.0f +
986  (*ptrShaderY3) * 4.0f / 273.0f +
987  (*ptrShaderY4) * 1.0f / 273.0f;
988  if( x > 1 )
989  {
990  ptrShaderY0++;
991  ptrShaderY1++;
992  ptrShaderY2++;
993  ptrShaderY3++;
994  ptrShaderY4++;
995  }
996 
997  bluredShadeColor += (*ptrShaderY0) * 4.0f / 273.0f +
998  (*ptrShaderY1) *16.0f / 273.0f +
999  (*ptrShaderY2) *26.0f / 273.0f +
1000  (*ptrShaderY3) *16.0f / 273.0f +
1001  (*ptrShaderY4) * 4.0f / 273.0f;
1002 
1003  if( x > 0 )
1004  {
1005  ptrShaderY0++;
1006  ptrShaderY1++;
1007  ptrShaderY2++;
1008  ptrShaderY3++;
1009  ptrShaderY4++;
1010  }
1011 
1012  bluredShadeColor += (*ptrShaderY0) * 7.0f / 273.0f +
1013  (*ptrShaderY1) *26.0f / 273.0f +
1014  (*ptrShaderY2) *41.0f / 273.0f +
1015  (*ptrShaderY3) *26.0f / 273.0f +
1016  (*ptrShaderY4) * 7.0f / 273.0f;
1017 
1018  if( x < ((int)m_realBufferSize.x - 1) )
1019  {
1020  ptrShaderY0++;
1021  ptrShaderY1++;
1022  ptrShaderY2++;
1023  ptrShaderY3++;
1024  ptrShaderY4++;
1025  }
1026 
1027  bluredShadeColor += (*ptrShaderY0) * 4.0f / 273.0f +
1028  (*ptrShaderY1) *16.0f / 273.0f +
1029  (*ptrShaderY2) *26.0f / 273.0f +
1030  (*ptrShaderY3) *16.0f / 273.0f +
1031  (*ptrShaderY4) * 4.0f / 273.0f;
1032 
1033  if( x < ((int)m_realBufferSize.x - 2) )
1034  {
1035  ptrShaderY0++;
1036  ptrShaderY1++;
1037  ptrShaderY2++;
1038  ptrShaderY3++;
1039  ptrShaderY4++;
1040  }
1041 
1042  bluredShadeColor += (*ptrShaderY0) * 1.0f / 273.0f +
1043  (*ptrShaderY1) * 4.0f / 273.0f +
1044  (*ptrShaderY2) * 7.0f / 273.0f +
1045  (*ptrShaderY3) * 4.0f / 273.0f +
1046  (*ptrShaderY4) * 1.0f / 273.0f;
1047 
1048  ptrShaderY0-= 3;
1049  ptrShaderY1-= 3;
1050  ptrShaderY2-= 3;
1051  ptrShaderY3-= 3;
1052  ptrShaderY4-= 3;
1053 
1054 #ifdef USE_SRGB_SPACE
1056 #else
1057  const SFVEC3F originColor = m_postshader_ssao.GetColorAtNotProtected( SFVEC2I( x,y ) );
1058 #endif
1059 
1060  const SFVEC3F shadedColor = m_postshader_ssao.ApplyShadeColor( SFVEC2I( x,y ), originColor, bluredShadeColor );
1061 #else
1062  // Debug code
1063  //const SFVEC3F shadedColor = SFVEC3F( 1.0f ) -
1064  // m_shaderBuffer[ y * m_realBufferSize.x + x];
1065  const SFVEC3F shadedColor = m_shaderBuffer[ y * m_realBufferSize.x + x ];
1066 #endif
1067 
1068  rt_final_color( ptr, shadedColor, false );
1069 
1070  ptr += 4;
1071  }
1072  }
1073 
1074  // Wait for all threads to finish
1075  #pragma omp barrier
1076 
1077  // Debug code
1078  //m_postshader_ssao.DebugBuffersOutputAsImages();
1079  }
1080 
1081  // End rendering
1083 }
SFVEC3F ApplyShadeColor(const SFVEC2I &aShaderPos, const SFVEC3F &aInputColor, const SFVEC3F &aShadeColor) const override
ApplyShadeColor - apply the final color process using a previous stage color.
const SFVEC3F & GetColorAtNotProtected(const SFVEC2I &aPos) const
void rt_final_color(GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
CPOSTSHADER_SSAO m_postshader_ssao
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
#define max(a, b)
Definition: auxiliary.h:86
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
static SFVEC3F convertLinearToSRGB(const SFVEC3F &aRGBcolor)
#define min(a, b)
Definition: auxiliary.h:85
void C3D_RENDER_RAYTRACING::rt_render_post_process_shade ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 915 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_POST_PROCESSING, CINFO3D_VISU::GetFlag(), m_postshader_ssao, m_realBufferSize, m_rt_render_state, C3D_RENDER_BASE::m_settings, m_shaderBuffer, REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_POST_PROCESS_BLUR_AND_FINISH, and CPOSTSHADER_SSAO::Shade().

Referenced by render().

917 {
918  (void)ptrPBO; // unused
919 
921  {
922  if( aStatusTextReporter )
923  aStatusTextReporter->Report( _("Rendering: Post processing shader") );
924 
925  // Compute the shader value
926  #pragma omp parallel for schedule(dynamic)
927  for( signed int y = 0; y < (int)m_realBufferSize.y; ++y )
928  {
929  SFVEC3F *ptr = &m_shaderBuffer[ y * m_realBufferSize.x ];
930 
931  for( signed int x = 0; x < (int)m_realBufferSize.x; ++x )
932  {
933  *ptr = m_postshader_ssao.Shade( SFVEC2I( x, y ) );
934  ptr++;
935  }
936  }
937 
938  // Wait for all threads to finish
939  #pragma omp barrier
940 
941  // Set next state
943  }
944  else
945  {
946  // As this was an invalid state, set to finish
948  }
949 }
SFVEC3F Shade(const SFVEC2I &aShaderPos) const override
CPOSTSHADER_SSAO m_postshader_ssao
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void C3D_RENDER_RAYTRACING::rt_render_trace_block ( GLubyte *  ptrPBO,
signed int  iBlock 
)
private

Definition at line 658 of file c3d_render_raytracing.cpp.

References CINFO3D_VISU::CameraGet(), DISP_FACTOR, FL_RENDER_RAYTRACING_ANTI_ALIASING, FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_SHADOWS, CINFO3D_VISU::GetFlag(), HITINFO_PACKET_init(), CGENERICACCELERATOR::Intersect(), m_accelerator, m_BgColorBot_LinearRGB, m_BgColorTop_LinearRGB, m_blockPositions, m_postshader_ssao, m_realBufferSize, C3D_RENDER_BASE::m_settings, C3D_RENDER_BASE::m_windowSize, m_xoffset, m_yoffset, RAYPACKET_DIM, RAYPACKET_InitRays_with2DDisplacement(), RAYPACKET_RAYS_PER_PACKET, rt_final_color(), rt_shades_packet(), rt_trace_AA_packet(), and CPOSTSHADER::SetPixelData().

Referenced by rt_render_tracing().

660 {
661  // Initialize ray packets
662  // /////////////////////////////////////////////////////////////////////////
663  const SFVEC2UI &blockPos = m_blockPositions[iBlock];
664  const SFVEC2I blockPosI = SFVEC2I( blockPos.x + m_xoffset,
665  blockPos.y + m_yoffset );
666 
667  RAYPACKET blockPacket( m_settings.CameraGet(),
668  (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, DISP_FACTOR),
669  SFVEC2F(DISP_FACTOR, DISP_FACTOR) // Displacement random factor
670  );
671 
673 
674  HITINFO_PACKET_init( hitPacket_X0Y0 );
675 
676  // Calculate background gradient color
677  // /////////////////////////////////////////////////////////////////////////
678  SFVEC3F bgColor[RAYPACKET_DIM];// Store a vertical gradient color
679 
680  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
681  {
682  const float posYfactor = (float)(blockPosI.y + y) / (float)m_windowSize.y;
683 
684  bgColor[y] = m_BgColorTop_LinearRGB * SFVEC3F(posYfactor) +
685  m_BgColorBot_LinearRGB * ( SFVEC3F(1.0f) - SFVEC3F(posYfactor) );
686  }
687 
688  // Intersect ray packets (calculate the intersection with rays and objects)
689  // /////////////////////////////////////////////////////////////////////////
690  if( !m_accelerator->Intersect( blockPacket, hitPacket_X0Y0 ) )
691  {
692 
693  // If block is empty then set shades and continue
695  {
696  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
697  {
698  const SFVEC3F &outColor = bgColor[y];
699 
700  const unsigned int yBlockPos = blockPos.y + y;
701 
702  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
703  {
704  m_postshader_ssao.SetPixelData( blockPos.x + x,
705  yBlockPos,
706  SFVEC3F(),
707  outColor,
708  SFVEC3F(),
709  0,
710  1.0f );
711  }
712  }
713  }
714 
715  // This will set the output color to be displayed
716  // If post processing is enabled, it will not reflect the final result
717  // (as the final color will be computed on post processing)
718  // but it is used for report progress
719 
720  const bool isFinalColor = !m_settings.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING );
721 
722  for( unsigned int y = 0; y < RAYPACKET_DIM; ++y )
723  {
724  const SFVEC3F &outColor = bgColor[y];
725 
726  const unsigned int yConst = blockPos.x +
727  ( (y + blockPos.y) * m_realBufferSize.x);
728 
729  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x )
730  {
731  GLubyte *ptr = &ptrPBO[ (yConst + x) * 4 ];
732 
733  rt_final_color( ptr, outColor, isFinalColor );
734  }
735  }
736 
737  // There is nothing more here to do.. there are no hits ..
738  // just background so continue
739  return;
740  }
741 
742 
743  SFVEC3F hitColor_X0Y0[RAYPACKET_RAYS_PER_PACKET];
744 
745  // Shade original (0, 0) hits ("paint" the intersected objects)
746  // /////////////////////////////////////////////////////////////////////////
747  rt_shades_packet( bgColor,
748  blockPacket.m_ray,
749  hitPacket_X0Y0,
751  hitColor_X0Y0 );
752 
754  {
755  SFVEC3F hitColor_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
756 
757 
758  // Intersect one blockPosI + (0.5, 0.5) used for anti aliasing calculation
759  // /////////////////////////////////////////////////////////////////////////
760  HITINFO_PACKET hitPacket_AA_X1Y1[RAYPACKET_RAYS_PER_PACKET];
761  HITINFO_PACKET_init( hitPacket_AA_X1Y1 );
762 
763  RAYPACKET blockPacket_AA_X1Y1( m_settings.CameraGet(),
764  (SFVEC2F)blockPosI + SFVEC2F(0.5f, 0.5f),
765  SFVEC2F(DISP_FACTOR, DISP_FACTOR) // Displacement random factor
766  );
767 
768  if( !m_accelerator->Intersect( blockPacket_AA_X1Y1, hitPacket_AA_X1Y1 ) )
769  {
770  // Missed all the package
771  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
772  {
773  const SFVEC3F &outColor = bgColor[y];
774 
775  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
776  {
777  hitColor_AA_X1Y1[i] = outColor;
778  }
779  }
780  }
781  else
782  {
783  rt_shades_packet( bgColor,
784  blockPacket_AA_X1Y1.m_ray,
785  hitPacket_AA_X1Y1,
787  hitColor_AA_X1Y1
788  );
789  }
790 
791  SFVEC3F hitColor_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
792  SFVEC3F hitColor_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
793  SFVEC3F hitColor_AA_X0Y1_half[RAYPACKET_RAYS_PER_PACKET];
794 
795  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
796  {
797  const SFVEC3F color_average = ( hitColor_X0Y0[i] +
798  hitColor_AA_X1Y1[i] ) * SFVEC3F(0.5f);
799 
800  hitColor_AA_X1Y0[i] = color_average;
801  hitColor_AA_X0Y1[i] = color_average;
802  hitColor_AA_X0Y1_half[i] = color_average;
803  }
804 
805  RAY blockRayPck_AA_X1Y0[RAYPACKET_RAYS_PER_PACKET];
806  RAY blockRayPck_AA_X0Y1[RAYPACKET_RAYS_PER_PACKET];
807  RAY blockRayPck_AA_X1Y1_half[RAYPACKET_RAYS_PER_PACKET];
808 
810  (SFVEC2F)blockPosI + SFVEC2F(0.5f - DISP_FACTOR, DISP_FACTOR),
811  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
812  blockRayPck_AA_X1Y0 );
813 
815  (SFVEC2F)blockPosI + SFVEC2F(DISP_FACTOR, 0.5f - DISP_FACTOR),
816  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
817  blockRayPck_AA_X0Y1 );
818 
820  (SFVEC2F)blockPosI + SFVEC2F(0.25f - DISP_FACTOR, 0.25f - DISP_FACTOR),
821  SFVEC2F(DISP_FACTOR, DISP_FACTOR), // Displacement random factor
822  blockRayPck_AA_X1Y1_half );
823 
824  rt_trace_AA_packet( bgColor,
825  hitPacket_X0Y0, hitPacket_AA_X1Y1,
826  blockRayPck_AA_X1Y0,
827  hitColor_AA_X1Y0 );
828 
829  rt_trace_AA_packet( bgColor,
830  hitPacket_X0Y0, hitPacket_AA_X1Y1,
831  blockRayPck_AA_X0Y1,
832  hitColor_AA_X0Y1 );
833 
834  rt_trace_AA_packet( bgColor,
835  hitPacket_X0Y0, hitPacket_AA_X1Y1,
836  blockRayPck_AA_X1Y1_half,
837  hitColor_AA_X0Y1_half );
838 
839  // Average the result
840  for( unsigned int i = 0; i < RAYPACKET_RAYS_PER_PACKET; ++i )
841  {
842  hitColor_X0Y0[i] = ( hitColor_X0Y0[i] +
843  hitColor_AA_X1Y1[i] +
844  hitColor_AA_X1Y0[i] +
845  hitColor_AA_X0Y1[i] +
846  hitColor_AA_X0Y1_half[i]
847  ) * SFVEC3F(1.0f / 5.0f);
848  }
849  }
850 
851 
852  // Copy results to the next stage
853  // /////////////////////////////////////////////////////////////////////
854 
855  GLubyte *ptr = &ptrPBO[ ( blockPos.x +
856  (blockPos.y * m_realBufferSize.x) ) * 4 ];
857 
858  const uint32_t ptrInc = (m_realBufferSize.x - RAYPACKET_DIM) * 4;
859 
861  {
862  SFVEC2I bPos;
863  bPos.y = blockPos.y;
864 
865  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
866  {
867  bPos.x = blockPos.x;
868 
869  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
870  {
871  const SFVEC3F &hColor = hitColor_X0Y0[i];
872 
873  if( hitPacket_X0Y0[i].m_hitresult == true )
874  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
875  hitPacket_X0Y0[i].m_HitInfo.m_HitNormal,
876  hColor,
877  blockPacket.m_ray[i].at(
878  hitPacket_X0Y0[i].m_HitInfo.m_tHit ),
879  hitPacket_X0Y0[i].m_HitInfo.m_tHit,
880  hitPacket_X0Y0[i].m_HitInfo.m_ShadowFactor );
881  else
882  m_postshader_ssao.SetPixelData( bPos.x, bPos.y,
883  SFVEC3F(),
884  hColor,
885  SFVEC3F(),
886  0,
887  1.0f );
888 
889  rt_final_color( ptr, hColor, false );
890 
891  bPos.x++;
892  ptr += 4;
893  }
894 
895  ptr += ptrInc;
896  bPos.y++;
897  }
898  }
899  else
900  {
901  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
902  {
903  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
904  {
905  rt_final_color( ptr, hitColor_X0Y0[i], true );
906  ptr += 4;
907  }
908 
909  ptr += ptrInc;
910  }
911  }
912 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
void rt_shades_packet(const SFVEC3F *bgColorY, const RAY *aRayPkt, HITINFO_PACKET *aHitPacket, bool is_testShadow, SFVEC3F *aOutHitColor)
void rt_final_color(GLubyte *ptrPBO, const SFVEC3F &rgbColor, bool applyColorSpaceConversion)
CPOSTSHADER_SSAO m_postshader_ssao
Definition: ray.h:43
glm::ivec2 SFVEC2I
Definition: xv3d_types.h:42
CINFO3D_VISU & m_settings
settings refrence in use for this render
glm::uvec2 SFVEC2UI
Definition: xv3d_types.h:41
CGENERICACCELERATOR * m_accelerator
glm::vec2 SFVEC2F
Definition: xv3d_types.h:45
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
wxSize m_windowSize
The window size that this camera is working.
void rt_trace_AA_packet(const SFVEC3F *aBgColorY, const HITINFO_PACKET *aHitPck_X0Y0, const HITINFO_PACKET *aHitPck_AA_X1Y1, const RAY *aRayPck, SFVEC3F *aOutHitColor)
static void HITINFO_PACKET_init(HITINFO_PACKET *aHitPacket)
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
void SetPixelData(unsigned int x, unsigned int y, const SFVEC3F &aNormal, const SFVEC3F &aColor, const SFVEC3F &aHitPosition, float aDepth, float aShadowAttFactor)
Definition: cpostshader.cpp:78
#define RAYPACKET_RAYS_PER_PACKET
Definition: raypacket.h:40
CCAMERA & CameraGet() const
CameraGet - get current camera in use.
Definition: cinfo3d_visu.h:210
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
#define DISP_FACTOR
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
void RAYPACKET_InitRays_with2DDisplacement(const CCAMERA &aCamera, const SFVEC2F &aWindowsPosition, const SFVEC2F &a2DWindowsPosDisplacementFactor, RAY *aRayPck)
Definition: raypacket.cpp:174
void C3D_RENDER_RAYTRACING::rt_render_tracing ( GLubyte *  ptrPBO,
REPORTER aStatusTextReporter 
)
private

Definition at line 360 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_POST_PROCESSING, Format(), CINFO3D_VISU::GetFlag(), GetRunningMicroSecs(), m_blockPositions, m_blockPositionsWasProcessed, m_isPreview, m_nrBlocksRenderProgress, m_rt_render_state, C3D_RENDER_BASE::m_settings, REPORTER::Report(), RT_RENDER_STATE_FINISH, RT_RENDER_STATE_POST_PROCESS_SHADE, and rt_render_trace_block().

Referenced by render().

362 {
363  m_isPreview = false;
364  wxASSERT( m_blockPositions.size() <= LONG_MAX );
365 
366  const long nrBlocks = (long) m_blockPositions.size();
367  const unsigned startTime = GetRunningMicroSecs();
368  bool breakLoop = false;
369  int numBlocksRendered = 0;
370 
371  #pragma omp parallel for schedule(dynamic) shared(breakLoop) \
372  firstprivate(ptrPBO, nrBlocks, startTime) reduction(+:numBlocksRendered) default(none)
373  for( long iBlock = 0; iBlock < nrBlocks; iBlock++ )
374  {
375 
376  #pragma omp flush(breakLoop)
377  if( !breakLoop )
378  {
379  bool process_block;
380 
381  // std::vector<bool> stuffs eight bools to each byte, so access to
382  // them can never be natively atomic.
383  #pragma omp critical(checkProcessBlock)
384  {
385  process_block = !m_blockPositionsWasProcessed[iBlock];
386  m_blockPositionsWasProcessed[iBlock] = true;
387  }
388 
389  if( process_block )
390  {
391  rt_render_trace_block( ptrPBO, iBlock );
392  numBlocksRendered++;
393 
394 
395  // Check if it spend already some time render and request to exit
396  // to display the progress
397  #ifdef _OPENMP
398  if( omp_get_thread_num() == 0 )
399  #endif
400  if( (GetRunningMicroSecs() - startTime) > 150000 )
401  {
402  breakLoop = true;
403  #pragma omp flush(breakLoop)
404  }
405  }
406  }
407  }
408 
409  m_nrBlocksRenderProgress += numBlocksRendered;
410 
411  if( aStatusTextReporter )
412  aStatusTextReporter->Report( wxString::Format( _( "Rendering: %.0f %%" ),
413  (float)(m_nrBlocksRenderProgress * 100) /
414  (float)nrBlocks ) );
415 
416  // Check if it finish the rendering and if should continue to a post processing
417  // or mark it as finished
418  if( m_nrBlocksRenderProgress >= nrBlocks )
419  {
422  else
423  {
425  }
426  }
427 }
std::vector< bool > m_blockPositionsWasProcessed
this flags if a position was already processed (cleared each new render)
long m_nrBlocksRenderProgress
Save the number of blocks progress of the render.
CINFO3D_VISU & m_settings
settings refrence in use for this render
RT_RENDER_STATE m_rt_render_state
State used on quality render.
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
void Format(OUTPUTFORMATTER *out, int aNestLevel, int aCtl, CPTREE &aTree)
Function Format outputs a PTREE into s-expression format via an OUTPUTFORMATTER derivative.
Definition: ptree.cpp:205
unsigned GetRunningMicroSecs()
Function GetRunningMicroSecs An alternate way to calculate an elapset time (in microsecondes) to clas...
std::vector< SFVEC2UI > m_blockPositions
this encodes the Morton code positions
virtual REPORTER & Report(const wxString &aText, SEVERITY aSeverity=RPT_UNDEFINED)=0
Function Report is a pure virtual function to override in the derived object.
void rt_render_trace_block(GLubyte *ptrPBO, signed int iBlock)
void C3D_RENDER_RAYTRACING::rt_shades_packet ( const SFVEC3F bgColorY,
const RAY aRayPkt,
HITINFO_PACKET aHitPacket,
bool  is_testShadow,
SFVEC3F aOutHitColor 
)
private

Definition at line 503 of file c3d_render_raytracing.cpp.

References RAYPACKET_DIM, and shadeHit().

Referenced by rt_render_trace_block().

508 {
509  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
510  {
511  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
512  {
513  if( aHitPacket[i].m_hitresult == true )
514  {
515  aOutHitColor[i] = shadeHit( bgColorY[y],
516  aRayPkt[i],
517  aHitPacket[i].m_HitInfo,
518  false,
519  0,
520  is_testShadow );
521  }
522  else
523  {
524  aOutHitColor[i] = bgColorY[y];
525  }
526  }
527  }
528 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
void C3D_RENDER_RAYTRACING::rt_trace_AA_packet ( const SFVEC3F aBgColorY,
const HITINFO_PACKET aHitPck_X0Y0,
const HITINFO_PACKET aHitPck_AA_X1Y1,
const RAY aRayPck,
SFVEC3F aOutHitColor 
)
private

Definition at line 531 of file c3d_render_raytracing.cpp.

References FL_RENDER_RAYTRACING_SHADOWS, CINFO3D_VISU::GetFlag(), CGENERICACCELERATOR::Intersect(), HITINFO::m_acc_node_info, m_accelerator, HITINFO_PACKET::m_HitInfo, C3D_RENDER_BASE::m_settings, HITINFO::m_tHit, RAYPACKET_DIM, and shadeHit().

Referenced by rt_render_trace_block().

536 {
537  const bool is_testShadow = m_settings.GetFlag( FL_RENDER_RAYTRACING_SHADOWS );
538 
539  for( unsigned int y = 0, i = 0; y < RAYPACKET_DIM; ++y )
540  {
541  for( unsigned int x = 0; x < RAYPACKET_DIM; ++x, ++i )
542  {
543  const RAY &rayAA = aRayPck[i];
544 
545  HITINFO hitAA;
546  hitAA.m_tHit = std::numeric_limits<float>::infinity();
547  hitAA.m_acc_node_info = 0;
548 
549  bool hitted = false;
550 
551  const unsigned int idx0y1 = ( x + 0 ) + RAYPACKET_DIM * ( y + 1 );
552  const unsigned int idx1y1 = ( x + 1 ) + RAYPACKET_DIM * ( y + 1 );
553 
554  // Gets the node info from the hit.
555  const unsigned int nodex0y0 = aHitPck_X0Y0[ i ].m_HitInfo.m_acc_node_info;
556  const unsigned int node_AA_x0y0 = aHitPck_AA_X1Y1[ i ].m_HitInfo.m_acc_node_info;
557 
558  unsigned int nodex1y0 = 0;
559 
560  if( x < (RAYPACKET_DIM - 1) )
561  nodex1y0 = aHitPck_X0Y0[ i + 1 ].m_HitInfo.m_acc_node_info;
562 
563  unsigned int nodex0y1 = 0;
564 
565  if( y < (RAYPACKET_DIM - 1) )
566  nodex0y1 = aHitPck_X0Y0[ idx0y1 ].m_HitInfo.m_acc_node_info;
567 
568  unsigned int nodex1y1 = 0;
569 
570  if( ((x < (RAYPACKET_DIM - 1)) &&
571  (y < (RAYPACKET_DIM - 1))) )
572  nodex1y1 = aHitPck_X0Y0[ idx1y1 ].m_HitInfo.m_acc_node_info;
573 
574 
575  if( ((nodex0y0 == nodex1y0) || (nodex1y0 == 0)) && // If all notes are equal we assume there was no change on the object hits
576  ((nodex0y0 == nodex0y1) || (nodex0y1 == 0)) &&
577  ((nodex0y0 == nodex1y1) || (nodex1y1 == 0)) &&
578  (nodex0y0 == node_AA_x0y0) )
579  {
580  // Option 1
581  // This option will give a very good quality on reflections (slow)
582  /*
583  if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
584  {
585  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
586  }
587  else
588  {
589  if( m_accelerator->Intersect( rayAA, hitAA ) )
590  aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
591  else
592  aOutHitColor[i] += hitColor[i];
593  }
594  */
595 
596  // Option 2
597  // Trace again with the same node,
598  // then if miss just give the same color as before
599  //if( m_accelerator->Intersect( rayAA, hitAA, nodex0y0 ) )
600  // aOutHitColor[i] += shadeHit( aBgColorY[y], rayAA, hitAA, false, 0 );
601 
602  // Option 3
603  // Use same color
604 
605  }
606  else
607  {
608  // Try to intersect the different nodes
609  // It tests the possible combination of hitted or not hitted points
610  // This will try to get the best hit for this ray
611 
612  if( nodex0y0 != 0 )
613  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y0 );
614 
615  if( ( nodex1y0 != 0 ) &&
616  ( nodex0y0 != nodex1y0 ) )
617  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y0 );
618 
619  if( ( nodex0y1 != 0 ) &&
620  ( nodex0y0 != nodex0y1 ) &&
621  ( nodex1y0 != nodex0y1 ) )
622  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex0y1 );
623 
624  if( (nodex1y1 != 0 ) &&
625  ( nodex0y0 != nodex1y1 ) &&
626  ( nodex0y1 != nodex1y1 ) &&
627  ( nodex1y0 != nodex1y1 ) )
628  hitted |= m_accelerator->Intersect( rayAA, hitAA, nodex1y1 );
629 
630  if( (node_AA_x0y0 != 0 ) &&
631  ( nodex0y0 != node_AA_x0y0 ) &&
632  ( nodex0y1 != node_AA_x0y0 ) &&
633  ( nodex1y0 != node_AA_x0y0 ) &&
634  ( nodex1y1 != node_AA_x0y0 ) )
635  hitted |= m_accelerator->Intersect( rayAA, hitAA, node_AA_x0y0 );
636 
637  if( hitted )
638  {
639  // If we got any result, shade it
640  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
641  }
642  else
643  {
644  // Note: There are very few cases that will end on this situation
645  // so it is not so expensive to trace a single ray from the beginning
646 
647  // It was missed the 'last nodes' so, trace a ray from the beginning
648  if( m_accelerator->Intersect( rayAA, hitAA ) )
649  aOutHitColor[i] = shadeHit( aBgColorY[y], rayAA, hitAA, false, 0, is_testShadow );
650  }
651  }
652  }
653  }
654 }
#define RAYPACKET_DIM
Definition: raypacket.h:37
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
Definition: ray.h:43
CINFO3D_VISU & m_settings
settings refrence in use for this render
float m_tHit
( 4) distance
Definition: hitinfo.h:43
CGENERICACCELERATOR * m_accelerator
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
HITINFO m_HitInfo
Definition: hitinfo.h:63
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
unsigned int m_acc_node_info
( 4) The acc stores here the node that it hits
Definition: hitinfo.h:47
void C3D_RENDER_RAYTRACING::SetCurWindowSize ( const wxSize &  aSize)
overridevirtual

SetCurWindowSize - Before each render, the canvas will tell the render what is the size of its windows, so render can take actions if it changed.

Parameters
aSizethe current size of the render window

Implements C3D_RENDER_BASE.

Definition at line 112 of file c3d_render_raytracing.cpp.

References initializeNewWindowSize(), and C3D_RENDER_BASE::m_windowSize.

113 {
114  if( m_windowSize != aSize )
115  {
116  m_windowSize = aSize;
117  glViewport( 0, 0, m_windowSize.x, m_windowSize.y );
118 
120  }
121 }
wxSize m_windowSize
The window size that this camera is working.
void C3D_RENDER_RAYTRACING::setupMaterials ( )
private

Definition at line 56 of file c3d_render_createscene.cpp.

References CINFO3D_VISU::BiuTo3Dunits(), ConvertSRGBToLinear(), FL_RENDER_RAYTRACING_PROCEDURAL_TEXTURES, CINFO3D_VISU::GetFlag(), CINFO3D_VISU::m_BgColorTop, m_board_normal_perturbator, m_brushed_metal_normal_perturbator, m_copper_normal_perturbator, CINFO3D_VISU::m_CopperColor, m_materials, m_plastic_normal_perturbator, m_plastic_shine_normal_perturbator, C3D_RENDER_BASE::m_settings, CINFO3D_VISU::m_SilkScreenColor, m_solder_mask_normal_perturbator, CINFO3D_VISU::m_SolderMaskColor, and CINFO3D_VISU::m_SolderPasteColor.

Referenced by reload().

57 {
58 
60  {
62 
65 
67 
69 
71 
73  }
74 
75  // http://devernay.free.fr/cours/opengl/materials.html
76 
77  // Copper
80  (SFVEC3F)(0.18f), // ambient
81  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
82  glm::clamp( ((SFVEC3F)(1.0f) -
84  SFVEC3F( 0.0f ),
85  SFVEC3F( 0.35f ) ), // specular
86  0.4f * 128.0f, // shiness
87  0.0f, // transparency
88  0.0f );
89 
91  m_materials.m_Copper.SetNormalPerturbator( &m_copper_normal_perturbator );
92 
96  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
99  0.10f * 128.0f, // shiness
100  0.0f, // transparency
101  0.0f );
102 
104  ConvertSRGBToLinear( SFVEC3F( 0.11f ) ),// ambient
105  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
106  glm::clamp( ((SFVEC3F)(1.0f) -
108  SFVEC3F( 0.0f ),
109  SFVEC3F( 0.10f ) ), // specular
110  0.078125f * 128.0f, // shiness
111  0.0f, // transparency
112  0.0f );
113 
114  const float solderMask_gray = ( m_settings.m_SolderMaskColor.r +
116  m_settings.m_SolderMaskColor.b ) / 3.0f;
117 
118  const float solderMask_transparency = solderMask_gray * 0.40f + 0.005f;
119 
120  m_materials.m_SolderMask = CBLINN_PHONG_MATERIAL(
122  0.10f, // ambient
123  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
124  glm::clamp( ( (SFVEC3F)( 1.0f ) -
126  SFVEC3F( 0.0f ),
127  SFVEC3F( solderMask_gray * 2.0f ) ), // specular
128  0.85f * 128.0f, // shiness
129  solderMask_transparency, // transparency
130  0.16f ); // reflection
131 
132  m_materials.m_SolderMask.SetCastShadows( true );
133  m_materials.m_SolderMask.SetNrRefractionsSamples( 1 );
134  m_materials.m_SolderMask.SetNrReflectionsSamples( 2 );
135 
137  m_materials.m_SolderMask.SetNormalPerturbator( &m_solder_mask_normal_perturbator );
138 
139  m_materials.m_EpoxyBoard = CBLINN_PHONG_MATERIAL(
140  ConvertSRGBToLinear( SFVEC3F( 16.0f / 255.0f,
141  14.0f / 255.0f,
142  10.0f / 255.0f ) ), // ambient
143  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
144  ConvertSRGBToLinear( SFVEC3F( 10.0f / 255.0f,
145  8.0f / 255.0f,
146  10.0f / 255.0f ) ), // specular
147  0.1f * 128.0f, // shiness
148  0.10f, // transparency
149  0.0f ); // reflection
150 
151  m_materials.m_EpoxyBoard.SetAbsorvance( 10.0f );
152  m_materials.m_EpoxyBoard.SetNrRefractionsSamples( 3 );
153 
155  m_materials.m_EpoxyBoard.SetNormalPerturbator( &m_board_normal_perturbator );
156 
158  //SFVEC3F bgBot = (SFVEC3F)m_settings.m_BgColorBot;
159 
161  bgTop * 0.125f, // ambient
162  SFVEC3F( 0.0f, 0.0f, 0.0f ), // emissive
163  (SFVEC3F(1.0f) - bgTop) / 3.0f, // specular
164  0.10f * 128.0f, // shiness
165  0.0f, // transparency
166  0.50f ); // reflection
167 }
CPLASTICNORMAL m_plastic_normal_perturbator
SFVEC3F ConvertSRGBToLinear(const SFVEC3F &aSRGBcolor)
CBOARDNORMAL m_board_normal_perturbator
SFVEC3D m_CopperColor
in realistic mode: copper color
Definition: cinfo3d_visu.h:509
CCOPPERNORMAL m_copper_normal_perturbator
CPLASTICSHINENORMAL m_plastic_shine_normal_perturbator
CMETALBRUSHEDNORMAL m_brushed_metal_normal_perturbator
CINFO3D_VISU & m_settings
settings refrence in use for this render
SFVEC3D m_BgColorTop
background top color
Definition: cinfo3d_visu.h:504
Blinn Phong based material https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model.
Definition: cmaterial.h:248
SFVEC3D m_SolderPasteColor
in realistic mode: solder paste color
Definition: cinfo3d_visu.h:507
SFVEC3D m_SolderMaskColor
in realistic mode: solder mask color
Definition: cinfo3d_visu.h:506
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
SFVEC3D m_SilkScreenColor
in realistic mode: SilkScreen color
Definition: cinfo3d_visu.h:508
CSOLDERMASKNORMAL m_solder_mask_normal_perturbator
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
struct C3D_RENDER_RAYTRACING::@41 m_materials
double BiuTo3Dunits() const
BiuTo3Dunits - Board integer units To 3D units.
Definition: cinfo3d_visu.h:141
SFVEC3F C3D_RENDER_RAYTRACING::shadeHit ( const SFVEC3F aBgColor,
const RAY aRay,
HITINFO aHitInfo,
bool  aIsInsideObject,
unsigned int  aRecursiveLevel,
bool  is_testShadow 
) const
private

Definition at line 1703 of file c3d_render_raytracing.cpp.

References RAY::at(), FL_RENDER_RAYTRACING_ANTI_ALIASING, FL_RENDER_RAYTRACING_POST_PROCESSING, FL_RENDER_RAYTRACING_REFLECTIONS, FL_RENDER_RAYTRACING_REFRACTIONS, CMATERIAL::GetAbsorvance(), CMATERIAL::GetAmbientColor(), CLIGHT::GetCastShadows(), COBJECT::GetDiffuseColor(), CMATERIAL::GetEmissiveColor(), CINFO3D_VISU::GetFlag(), CLIGHT::GetLightParameters(), CLIGHTCONTAINER::GetList(), COBJECT::GetMaterial(), CINFO3D_VISU::GetNonCopperLayerThickness3DU(), CMATERIAL::GetNrReflectionsSamples(), CMATERIAL::GetNrRefractionsSamples(), CMATERIAL::GetReflection(), CMATERIAL::GetSpecularColor(), CMATERIAL::GetTransparency(), RAY::Init(), CGENERICACCELERATOR::Intersect(), CGENERICACCELERATOR::IntersectP(), m_accelerator, RAY::m_Dir, HITINFO::m_HitNormal, HITINFO::m_HitPoint, m_isPreview, m_lights, C3D_RENDER_BASE::m_settings, HITINFO::m_ShadowFactor, HITINFO::m_tHit, max, min, NextFloatUp(), HITINFO::pHitObject, Refract(), CMATERIAL::Shade(), and UniformRandomHemisphereDirection().

Referenced by render_preview(), rt_shades_packet(), and rt_trace_AA_packet().

1709 {
1710  if( aRecursiveLevel > 2 )
1711  return SFVEC3F( 0.0f );
1712 
1713  SFVEC3F hitPoint = aHitInfo.m_HitPoint;
1714 
1715  if( !m_isPreview )
1716  hitPoint += aHitInfo.m_HitNormal * m_settings.GetNonCopperLayerThickness3DU() * 1.0f;
1717 
1718  const CMATERIAL *objMaterial = aHitInfo.pHitObject->GetMaterial();
1719  wxASSERT( objMaterial != NULL );
1720 
1721  const SFVEC3F diffuseColorObj = aHitInfo.pHitObject->GetDiffuseColor( aHitInfo );
1722 
1723  SFVEC3F outColor = objMaterial->GetEmissiveColor();
1724 
1725  const LIST_LIGHT &lightList = m_lights.GetList();
1726 
1727 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1728  const bool is_aa_enabled = m_settings.GetFlag( FL_RENDER_RAYTRACING_ANTI_ALIASING ) &&
1729  (!m_isPreview);
1730 #endif
1731 
1732  float shadow_att_factor_sum = 0.0f;
1733 
1734  unsigned int nr_lights_that_can_cast_shadows = 0;
1735 
1736  for( LIST_LIGHT::const_iterator ii = lightList.begin();
1737  ii != lightList.end();
1738  ++ii )
1739  {
1740  const CLIGHT *light = (CLIGHT *)*ii;
1741 
1742  SFVEC3F vectorToLight;
1743  SFVEC3F colorOfLight;
1744  float distToLight;
1745 
1746  light->GetLightParameters( hitPoint, vectorToLight, colorOfLight, distToLight );
1747 
1748  if( m_isPreview )
1749  colorOfLight = SFVEC3F( 1.0f );
1750 
1751  /*
1752  if( (!m_isPreview) &&
1753  // Little hack to make randomness to the shading and shadows
1754  m_settings.GetFlag( FL_RENDER_RAYTRACING_POST_PROCESSING ) )
1755  vectorToLight = glm::normalize( vectorToLight +
1756  UniformRandomHemisphereDirection() * 0.1f );
1757  */
1758 
1759  const float NdotL = glm::dot( aHitInfo.m_HitNormal, vectorToLight );
1760 
1761  // Only calc shade if the normal is facing the direction of light,
1762  // otherwise it is in the shadow
1763  if( NdotL >= FLT_EPSILON )
1764  {
1765  float shadow_att_factor_light = 1.0f;
1766 
1767  if( is_testShadow && light->GetCastShadows() )
1768  {
1769  nr_lights_that_can_cast_shadows++;
1770 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1771  if( (!is_aa_enabled) ||
1772 
1773  // For rays that are recursive, just calculate one hit shadow
1774  (aRecursiveLevel > 0) ||
1775 
1776  // Only use soft shadows if using post processing
1778  )
1779  {
1780 #endif
1781  RAY rayToLight;
1782  rayToLight.Init( hitPoint, vectorToLight );
1783 
1784  // Test if point is not in the shadow.
1785  // Test for any hit from the point in the direction of light
1786  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1787  shadow_att_factor_light = 0.0f;
1788 
1789 #if USE_EXPERIMENTAL_SOFT_SHADOWS
1790  }
1791 
1792  // Experimental softshadow calculation
1793  else
1794  {
1795 
1796  const unsigned int shadow_number_of_samples = 3;
1797  const float shadow_inc_factor = 1.0f / (float)(shadow_number_of_samples);
1798 
1799  for( unsigned int i = 0; i < shadow_number_of_samples; ++i )
1800  {
1801  const SFVEC3F unifVector = UniformRandomHemisphereDirection();
1802  const SFVEC3F disturbed_vector_to_light = glm::normalize( vectorToLight +
1803  unifVector *
1804  0.05f );
1805 
1806  RAY rayToLight;
1807  rayToLight.Init( hitPoint, disturbed_vector_to_light );
1808 
1809  // !TODO: there are multiple ways that this tests can be
1810  // optimized. Eg: by packing rays or to test against the
1811  // latest hit object.
1812 
1813  if( m_accelerator->IntersectP( rayToLight, distToLight ) )
1814  {
1815  shadow_att_factor_light -= shadow_inc_factor;
1816  }
1817  }
1818  }
1819 #endif
1820  shadow_att_factor_sum += shadow_att_factor_light;
1821  }
1822 
1824  {
1825  outColor += objMaterial->Shade( aRay,
1826  aHitInfo,
1827  NdotL,
1828  diffuseColorObj,
1829  vectorToLight,
1830  colorOfLight,
1831  shadow_att_factor_light );
1832  }
1833  else
1834  {
1835  // This is a render hack in order to compensate for the lack of
1836  // ambient and too much darkness when using post process shader
1837  // It will calculate as it was not in shadow
1838  outColor += objMaterial->Shade( aRay,
1839  aHitInfo,
1840  NdotL,
1841  diffuseColorObj,
1842  vectorToLight,
1843  colorOfLight,
1844  // The sampled point will be darkshaded by the post
1845  // processing, so here it compensates to not shadow
1846  // so much
1847  glm::min( shadow_att_factor_light + (3.0f / 6.0f), 1.0f )
1848  );
1849  }
1850  }
1851  else
1852  {
1853  outColor += objMaterial->GetAmbientColor();
1854  }
1855 
1856  // Only use the headlight for preview
1857  if( m_isPreview )
1858  break;
1859  }
1860 
1861  // Improvement: this is not taking in account the lightcolor
1862  if( nr_lights_that_can_cast_shadows > 0 )
1863  {
1864  aHitInfo.m_ShadowFactor = glm::max( shadow_att_factor_sum /
1865  (float)(nr_lights_that_can_cast_shadows * 1.0f), 0.0f );
1866  }
1867  else
1868  {
1869  aHitInfo.m_ShadowFactor = 1.0f;
1870  }
1871 
1872  // Clamp color to not be brighter than 1.0f
1873  outColor = glm::min( outColor, SFVEC3F( 1.0f ) );
1874 
1875  if( !m_isPreview )
1876  {
1877  // Reflections
1878  // /////////////////////////////////////////////////////////////////////
1879 
1880  if( !aIsInsideObject &&
1881  (objMaterial->GetReflection() > 0.0f) &&
1883  {
1884  const unsigned int reflection_number_of_samples = objMaterial->GetNrReflectionsSamples();
1885 
1886  SFVEC3F sum_color = SFVEC3F(0.0f);
1887 
1888  const SFVEC3F reflectVector = aRay.m_Dir -
1889  2.0f * glm::dot( aRay.m_Dir, aHitInfo.m_HitNormal ) *
1890  aHitInfo.m_HitNormal;
1891 
1892  for( unsigned int i = 0; i < reflection_number_of_samples; ++i )
1893  {
1894  // Apply some randomize to the reflected vector
1895  const SFVEC3F random_reflectVector =
1896  glm::normalize( reflectVector +
1898  0.025f );
1899 
1900  RAY reflectedRay;
1901  reflectedRay.Init( hitPoint, random_reflectVector );
1902 
1903  HITINFO reflectedHit;
1904  reflectedHit.m_tHit = std::numeric_limits<float>::infinity();
1905 
1906  if( m_accelerator->Intersect( reflectedRay, reflectedHit ) )
1907  {
1908  sum_color += ( diffuseColorObj + objMaterial->GetSpecularColor() ) *
1909  shadeHit( aBgColor,
1910  reflectedRay,
1911  reflectedHit,
1912  false,
1913  aRecursiveLevel + 1,
1914  is_testShadow ) *
1915  SFVEC3F( objMaterial->GetReflection() *
1916  // Falloff factor
1917  (1.0f / ( 1.0f + 0.75f * reflectedHit.m_tHit *
1918  reflectedHit.m_tHit) ) );
1919  }
1920  }
1921 
1922  outColor += (sum_color / SFVEC3F( (float)reflection_number_of_samples) );
1923  }
1924 
1925 
1926  // Refractions
1927  // /////////////////////////////////////////////////////////////////////
1928 
1929  if( (objMaterial->GetTransparency() > 0.0f) &&
1931  {
1932  const float airIndex = 1.000293f;
1933  const float glassIndex = 1.49f;
1934  const float air_over_glass = airIndex / glassIndex;
1935  const float glass_over_air = glassIndex / airIndex;
1936 
1937  const float refractionRatio = aIsInsideObject?glass_over_air:air_over_glass;
1938 
1939  SFVEC3F refractedVector;
1940 
1941  if( Refract( aRay.m_Dir,
1942  aHitInfo.m_HitNormal,
1943  refractionRatio,
1944  refractedVector ) )
1945  {
1946  const float objTransparency = objMaterial->GetTransparency();
1947 
1948  // This increase the start point by a "fixed" factor so it will work the
1949  // same for all distances
1950  const SFVEC3F startPoint = aRay.at( NextFloatUp(
1951  NextFloatUp(
1952  NextFloatUp( aHitInfo.m_tHit ) ) ) );
1953 
1954  const unsigned int refractions_number_of_samples = objMaterial->GetNrRefractionsSamples();
1955 
1956  SFVEC3F sum_color = SFVEC3F(0.0f);
1957 
1958  for( unsigned int i = 0; i < refractions_number_of_samples; ++i )
1959  {
1960  RAY refractedRay;
1961 
1962  if( refractions_number_of_samples > 1 )
1963  {
1964  // apply some randomize to the refracted vector
1965  const SFVEC3F randomizeRefractedVector = glm::normalize( refractedVector +
1967  0.15f *
1968  (1.0f - objTransparency) );
1969 
1970  refractedRay.Init( startPoint, randomizeRefractedVector );
1971  }
1972  else
1973  {
1974  refractedRay.Init( startPoint, refractedVector );
1975  }
1976 
1977  HITINFO refractedHit;
1978  refractedHit.m_tHit = std::numeric_limits<float>::infinity();
1979 
1980  SFVEC3F refractedColor = objMaterial->GetAmbientColor();
1981 
1982  if( m_accelerator->Intersect( refractedRay, refractedHit ) )
1983  {
1984  refractedColor = shadeHit( aBgColor,
1985  refractedRay,
1986  refractedHit,
1987  true,
1988  aRecursiveLevel + 1,
1989  false );
1990 
1991  const SFVEC3F absorbance = ( SFVEC3F(1.0f) - diffuseColorObj ) *
1992  (1.0f - objTransparency ) *
1993  objMaterial->GetAbsorvance() * // Adjust falloff factor
1994  -refractedHit.m_tHit;
1995 
1996  const SFVEC3F transparency = SFVEC3F( expf( absorbance.r ),
1997  expf( absorbance.g ),
1998  expf( absorbance.b ) );
1999 
2000  sum_color += refractedColor * transparency * objTransparency;
2001  }
2002  else
2003  {
2004  sum_color += refractedColor * objTransparency;
2005  }
2006  }
2007 
2008  outColor = outColor * (1.0f - objTransparency) +
2009  (sum_color / SFVEC3F( (float)refractions_number_of_samples) );
2010  }
2011  }
2012  }
2013 
2014  //outColor += glm::max( -glm::dot( aHitInfo.m_HitNormal, aRay.m_Dir ), 0.0f ) *
2015  // objMaterial->GetAmbientColor();
2016 
2017  return outColor;
2018 }
float m_ShadowFactor
( 4) Shadow attenuation (1.0 no shadow, 0.0f darkness)
Definition: hitinfo.h:50
float GetTransparency() const
Definition: cmaterial.h:183
const LIST_LIGHT & GetList() const
GetList - get light list of this container.
Definition: clight.h:196
const SFVEC3F & GetAmbientColor() const
Definition: cmaterial.h:178
SFVEC3F shadeHit(const SFVEC3F &aBgColor, const RAY &aRay, HITINFO &aHitInfo, bool aIsInsideObject, unsigned int aRecursiveLevel, bool is_testShadow) const
A base material class that can be used to derive a material implementation.
Definition: cmaterial.h:167
void Init(const SFVEC3F &o, const SFVEC3F &d)
Definition: ray.cpp:38
virtual bool IntersectP(const RAY &aRay, float aMaxDistance) const =0
float GetAbsorvance() const
Definition: cmaterial.h:185
float GetNonCopperLayerThickness3DU() const
GetNonCopperLayerThickness3DU - Get the current non copper layers thickness.
Definition: cinfo3d_visu.h:159
SFVEC3F at(float t) const
Definition: ray.h:65
const CMATERIAL * GetMaterial() const
Definition: cobject.h:63
const SFVEC3F & GetSpecularColor() const
Definition: cmaterial.h:180
Definition: ray.h:43
CINFO3D_VISU & m_settings
settings refrence in use for this render
float m_tHit
( 4) distance
Definition: hitinfo.h:43
bool Refract(const SFVEC3F &aInVector, const SFVEC3F &aNormal, float aRin_over_Rout, SFVEC3F &aOutVector)
Refract Based on: https://github.com/mmp/pbrt-v3/blob/master/src/core/reflection.h See also: http://w...
Definition: 3d_math.h:113
virtual SFVEC3F Shade(const RAY &aRay, const HITINFO &aHitInfo, float NdotL, const SFVEC3F &aDiffuseObjColor, const SFVEC3F &aDirToLight, const SFVEC3F &aLightColor, float aShadowAttenuationFactor) const =0
Shade - Shades an intersection point.
SFVEC3F m_HitPoint
(12) hit position
Definition: hitinfo.h:49
CGENERICACCELERATOR * m_accelerator
unsigned int GetNrReflectionsSamples() const
Definition: cmaterial.h:187
virtual bool Intersect(const RAY &aRay, HITINFO &aHitInfo) const =0
unsigned int GetNrRefractionsSamples() const
Definition: cmaterial.h:186
const COBJECT * pHitObject
( 4) Object that was hitted
Definition: hitinfo.h:45
A base light class to derive to implement other light classes.
Definition: clight.h:37
SFVEC3F m_Dir
Definition: ray.h:48
SFVEC3F UniformRandomHemisphereDirection()
Definition: 3d_math.h:54
bool GetFlag(DISPLAY3D_FLG aFlag) const
GetFlag - get a configuration status of a flag.
bool GetCastShadows() const
Definition: clight.h:58
Stores the hit information of a ray with a point on the surface of a object.
Definition: hitinfo.h:40
#define max(a, b)
Definition: auxiliary.h:86
glm::vec3 SFVEC3F
Definition: xv3d_types.h:47
float NextFloatUp(float v)
Definition: 3d_fastmath.h:136
virtual void GetLightParameters(const SFVEC3F &aHitPoint, SFVEC3F &aOutVectorToLight, SFVEC3F &aOutLightColor, float &aOutDistance) const =0
GetLightParameters - Get parameters from this light.
SFVEC3F m_HitNormal
(12) normal at the hit point
Definition: hitinfo.h:42
std::list< CLIGHT * > LIST_LIGHT
Definition: clight.h:151
const SFVEC3F & GetEmissiveColor() const
Definition: cmaterial.h:179
virtual SFVEC3F GetDiffuseColor(const HITINFO &aHitInfo) const =0
float GetReflection() const
Definition: cmaterial.h:184
#define min(a, b)
Definition: auxiliary.h:85

Member Data Documentation

SFVEC3F C3D_RENDER_RAYTRACING::m_BgColorBot_LinearRGB
private

Definition at line 157 of file c3d_render_raytracing.h.

Referenced by render(), and rt_render_trace_block().

SFVEC3F C3D_RENDER_RAYTRACING::m_BgColorTop_LinearRGB
private

Definition at line 156 of file c3d_render_raytracing.h.

Referenced by render(), and rt_render_trace_block().

std::vector< SFVEC2UI > C3D_RENDER_RAYTRACING::m_blockPositions
private

this encodes the Morton code positions

Definition at line 165 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions(), restart_render_state(), rt_render_trace_block(), and rt_render_tracing().

std::vector< SFVEC2UI > C3D_RENDER_RAYTRACING::m_blockPositionsFast
private

this encodes the Morton code positions (on fast preview mode)

Definition at line 171 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions(), and render_preview().

std::vector< bool > C3D_RENDER_RAYTRACING::m_blockPositionsWasProcessed
private

this flags if a position was already processed (cleared each new render)

Definition at line 168 of file c3d_render_raytracing.h.

Referenced by restart_render_state(), and rt_render_tracing().

CBOARDNORMAL C3D_RENDER_RAYTRACING::m_board_normal_perturbator
private

Definition at line 111 of file c3d_render_raytracing.h.

Referenced by setupMaterials().

CMETALBRUSHEDNORMAL C3D_RENDER_RAYTRACING::m_brushed_metal_normal_perturbator
private

Definition at line 116 of file c3d_render_raytracing.h.

Referenced by add_3D_models(), and setupMaterials().

CDIRECTIONALLIGHT* C3D_RENDER_RAYTRACING::m_camera_light
private

Definition at line 140 of file c3d_render_raytracing.h.

Referenced by C3D_RENDER_RAYTRACING(), Redraw(), reload(), and render().

CCONTAINER2D C3D_RENDER_RAYTRACING::m_containerWithObjectsToDelete
private

This will store the list of created objects special for RT, that will be clear in the end.

Definition at line 150 of file c3d_render_raytracing.h.

Referenced by insert3DPadHole(), insert3DViaHole(), and reload().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_Copper

Definition at line 107 of file c3d_render_raytracing.h.

CCOPPERNORMAL C3D_RENDER_RAYTRACING::m_copper_normal_perturbator
private

Definition at line 112 of file c3d_render_raytracing.h.

Referenced by setupMaterials().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_EpoxyBoard

Definition at line 106 of file c3d_render_raytracing.h.

SFVEC2UI C3D_RENDER_RAYTRACING::m_fastPreviewModeSize
private

Definition at line 174 of file c3d_render_raytracing.h.

Referenced by initialize_block_positions().

HITINFO_PACKET* C3D_RENDER_RAYTRACING::m_firstHitinfo
private

Definition at line 176 of file c3d_render_raytracing.h.

Referenced by C3D_RENDER_RAYTRACING().

CBLINN_PHONG_MATERIAL C3D_RENDER_RAYTRACING::m_Floor

Definition at line 108 of file c3d_render_raytracing.h.

bool C3D_RENDER_BASE::m_is_opengl_initialized
protectedinherited

flag if the opengl specific for this render was already initialized

Definition at line 97 of file c3d_render_base.h.

Referenced by C3D_RENDER_BASE::C3D_RENDER_BASE(), initializeOpenGL(), C3D_RENDER_OGL_LEGACY::initializeOpenGL(), Redraw(), and C3D_RENDER_OGL_LEGACY::Redraw().

bool C3D_RENDER_RAYTRACING::m_isPreview
private
CLIGHTCONTAINER C3D_RENDER_RAYTRACING::m_lights
private

Definition at line 138 of file c3d_render_raytracing.h.

Referenced by reload(), and shadeHit().

const wxChar * C3D_RENDER_BASE::m_logTrace = wxT( "KI_TRACE_3D_RENDER" )
staticprotectedinherited

Trace mask used to enable or disable the trace output of this class.

The debug output can be turned on by setting the WXTRACE environment variable to "KI_TRACE_3D_RENDER". See the wxWidgets documentation on wxLogTrace for more information.

Definition at line 111 of file c3d_render_base.h.

Referenced by C3D_RENDER_BASE::C3D_RENDER_BASE(), C3D_RENDER_OGL_LEGACY::C3D_RENDER_OGL_LEGACY(), C3D_RENDER_RAYTRACING(), opengl_init_pbo(), C3D_RENDER_OGL_LEGACY::~C3D_RENDER_OGL_LEGACY(), and ~C3D_RENDER_RAYTRACING().

struct { ... } C3D_RENDER_RAYTRACING::m_materials
MAP_MODEL_MATERIALS C3D_RENDER_RAYTRACING::m_model_materials